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Visual Reconciliation of Alternative
Similarity Spaces in Climate Modeling
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Deborah N. Huntzinger, Robert Cook, Enrico Bertini, and Cláudio T. Silva, Fellow IEEE

Fig. 1: Iterative visual reconciliation of groupings based on climate model structure and model output. Visual inspection of
similarity coupled with an underlying computation model facilitates iterative refinement of the groups and flexible exploration of
the importance of the different parameters.

Abstract— Visual data analysis often requires grouping of data objects based on their similarity. In many application domains re-
searchers use algorithms and techniques like clustering and multidimensional scaling to extract groupings from data. While extracting
these groups using a single similarity criteria is relatively straightforward, comparing alternative criteria poses additional challenges.
In this paper we define visual reconciliation as the problem of reconciling multiple alternative similarity spaces through visualization
and interaction. We derive this problem from our work on model comparison in climate science where climate modelers are faced with
the challenge of making sense of alternative ways to describe their models: one through the output they generate, another through
the large set of properties that describe them. Ideally, they want to understand whether groups of models with similar spatio-temporal
behaviors share similar sets of criteria or, conversely, whether similar criteria lead to similar behaviors. We propose a visual ana-
lytics solution based on linked views, that addresses this problem by allowing the user to dynamically create, modify and observe
the interaction among groupings, thereby making the potential explanations apparent. We present case studies that demonstrate the
usefulness of our technique in the area of climate science.

Index Terms—Similarity, clustering, matrix, optimization, climate model

1 INTRODUCTION

Grouping of data objects based on similarity criteria is a common ana-
lysis task. In different application domains, computational methods
such as clustering, dimensionality reduction, are used for extracting
groupings from data. However, in the real world, with the growing
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variety of collected and available data, group characterization is no
longer restricted to a single set of criteria; it usually involves alter-
native sets. Exploring the inter-relationship among groups defined by
such alternative similarity criteria is a challenging problem. For exam-
ple, in health care, an emerging area of research is to reconcile patient
similarity based on their demographics with that based on their dis-
ease history, for targeted drug development [42]. In climate science,
an open problem is to analyze how similar outputs from model simu-
lations can be linked with similarity in the model structures, character-
ized by diverse sets of criteria. Analyzing features of model structures
and their impact on model output, can throw light into important global
climate change indicators [21].

Redescription mining algorithms have been developed for quantify-
ing and exploring relationships among multiple data descriptors [26].
These techniques have focused on mining algorithms for binary data,
where objects are characterized by the presence or absence of certain
features. Group extraction based on such computational methods are
heavily influenced by parameter settings. Also, it usually takes multi-
ple iterations to find an adequate solution; and in most cases, only ap-
proximate solutions can be found. Domain experts need to be involved
in this iterative process, utilizing their expertise for controlling the pa-
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Fig. 2: Conceptual model of visual reconciliation between binary
model structure data and time-varying model output data. Iterative
creation of groups and derivations of relationship between output si-
milarity and importance of the different model structure criteria. Blue
and orange indicate different groups of models.

rameters. This necessitates a visual analytics approach towards user-
driven group extraction and communication of relationships among the
groups, which are characterized by diverse descriptive parameters.

To achieve this goal, we introduce a novel visual analytics
paradigm: visual reconciliation, which is an iterative, human-in-the-
loop refinement strategy for reconciling alternative similarity spaces.
The reconciliation technique involves synergy among computational
methods, adaptive visual representations, and a flexible interaction
model, for communicating the relationships among the similarity
spaces. While iterative refinement strategies are not new in visual ana-
lytics [30, 33], sense-making of diverse characterization of data spaces
is still an emerging area of research [39]. In this context, we introduce
the problem of reconciling the characteristics of any data object with
respect to alternative similarity spaces, which in this case comprise of
boolean and time-varying attributes. The strength of the reconciliation
model stems from transparency in presentation and communication of
the similarity relationships among diverse data descriptors, with mini-
mal abstraction, and effective visual guidance through visual cues and
direct manipulation of the data. The design and interactions are mo-
tivated by domain experts’ need for visual representations with high
fidelity, and a simple yet effective interaction mechanism for browsing
through the parameters.

Our concept of visual reconciliation is grounded in our experience
of collaborating with climate scientists as part of the Multi-Scale Syn-
thesis and Terrestrial Model Inter-comparison Project (MsTMIP). An
open problem in climate science research is to analyze the effect that
similarity and differences in climate model structures have on the tem-
poral variance in model outputs. Recent research has shown model
structures can have significant impact on variability of outputs [16],
and that, some of these findings need to be further investigated in
details for exploring different hypotheses. To facilitate the scientific
analysis process, we propose an analysis paradigm for reconciling al-
ternative similarity spaces, that leverages the high bandwidth of human
perception system and exploits the pattern detection and optimization
capabilities of computing models [3, 18]. The key contributions of this
work stems from a visual reconciliation technique (Fig. 2) that i) helps
climate scientists understand the dependency between alternative sim-
ilarity spaces for climate models, ii) facilitates iterative refinement of
groups with the help of a feedback loop, and iii) allows flexible multi-
way interaction and exploration of the parameter space for reconciling
the importance of the model parameters with the model groupings.

2 MOTIVATION

Why do we need a new visual analytics technique? Reconciling al-
ternative similarity spaces is challenging on several counts: i) Data
descriptors can comprise of different attribute types. From a human
cognition point-of-view, reconciling the similarity of climate models
across two different visual representations is challenging. There needs
to be explicit encoding of similarity [11] that helps in efficient visual
comparison and preserve the mental model about similarity. Adapta-
tion of similarity needs to be reflected by dynamic linking between
views without causing change blindness; ii) For aligning two different
similarity spaces, say computed by two clustering algorithms, we will
in most cases get an approximate result. The result will need to be
iterated upon with subsequent parameter tuning to achieve higher ac-

curacy. This necessitates iteration, and therefore a human-in-the-loop
approach; iii) Domain experts need to trust the methodology working
at the back-end and interact with parameters for understanding their
importance. Fully automated methods do not allow that flexibility.
Thereby, a transparent representation with minimal abstraction is nec-
essary where parameters in similarity computation can be influenced
by user selections and filters.

As mentioned before, the technique is not restricted to climate mo-
dels, but for simplifying our discussion in this paper we specifically
discuss the applicability of the visual reconciliation technique in the
context of climate modeling.

2.1 Problem Characterization
Climate models, specifically Terrestrial Biosphere Models (TBM) are
now an important tool for understanding land-atmosphere carbon ex-
change across the globe. TBMs can be used to attribute carbon
sources (e.g., fires, farmlands) and sinks (e.g., forests, oceans) to ex-
plicit ecosystem processes. Each TBM is defined by the different input
parameters for characterizing these processes and outputs that quan-
tify the dependency between the carbon cycle and the ecosystem pro-
cesses. In the context of this work, each model has a dual representa-
tion of a weighted collection of criteria or descriptive parameters, and
time-series for different outputs, for different regions.
Model Structure: Model structure refers to the types of processes
considered (e.g., nutrient cycling, lateral transport of carbon), and how
these processes are represented through different criteria (e.g., pho-
tosynthetic formulation, temperature sensitivity, etc.) in the models.
A model simulation algorithm can have different implementations of
these processes. These implementations are different from each other
due to the presence or absence of the different criteria, that control the
specific process. For example, if a model simulates photosynthesis, a
group of criteria like simulating carbon pools, influence of
soil moisture, and stomatal conductance can be either
present or absent. Currently, climate scientists do not have an objec-
tive way of choosing one set of criteria over other, that can influence
the output. A model structure is a function of these criteria. If there
are n criteria, there can be 2n combinations of this function. In our
data, there are 4 different classes of criteria, for energy, carbon, veg-
etation, and respiration; with each class comprising of criteria, which
are about 20 to 30 in number.
Model Output: Model simulation outputs are ecosystem variables
that help climate scientists predict the rates of carbon dioxide increases
and changes in the atmosphere. For example, Gross Primary Produc-
tivity (GPP) is arguably the most important ecosystem variable, indi-
cating the total amount of energy that is fixed from sunlight, before
respiration and decomposition. Climate scientists need to understand
patterns of GPP in order to predict rates of carbon dioxide increases
and changes in atmospheric temperature.
Relationship between model structure and output: In previous
work, we had developed the SimilarityExplorer tool [28] for analyz-
ing similarity and differences among multifaceted model outputs. De-
spite the standardized protocol used to derive initial conditions, mod-
els show a high degree of variation for GPP, which can be attributed
to differences in model structural information [16].

Therefore, one of the open research questions in the TBM domain
is how similarity or differences in model output can be correlated with
that in model structures. The heterogeneity of model structure and
model output data makes it complex to derive one-to-one relationships
among them. Currently, in absence of an effective analysis technique,
scientists manually browse through the theoretically exponential num-
ber of model structure combinations, and analyze their output. This
process is inefficient and also ineffective due to the large parameter
space which can easily cause important patterns to be missed.

In the visual reconciliation technique, we provide a conceptual
framework that enable scientists to reconcile model structural similar-
ity with output similarity. We focus on using visual analytics methods
for addressing the following high-level analysis questions: i) given all
other factors are constant, analyze how different combination of pa-
rameters within model structure cause similarity or difference in model

output, and ii) by examining time-varying model outputs at different
regions, understand which combination of parameters cause the same
clusters or groups in model structure.

2.2 Visual Reconciliation Goals
As illustrated in Fig. 2, the visual reconciliation technique enables cli-
mate scientists to: i) analyze model structure and use that as feedback
for reconciling similarity or differences in model output, and ii) ana-
lyze model output and use that as a feedback for comparing similarity
or differences in model structure. The reconciliation model focuses on
three key goals:
Similarity encoding and linking: For providing guidance on choos-
ing the starting points of analysis, the visual representations of both
structure and output encode similarity functions. Subsequently, sci-
entists can use those initial seed points for reconciling structure char-
acteristics with output data, or conversely, for reconciling output data
with structure characteristics.
Flexible exploration of parameters: The visual feedback and inter-
action model adapts to the analysts’ workflow. Scientists can choose
different combinations of parameters, customize clusters on model
structure and model output side and accordingly the visual representa-
tions change, different indicators of similarity are highlighted.
Iterative refinement of groups: By incorporating user feedback in
conjunction with a computation model, the reconciliation technique
allows users to explore different group parameters in both data spaces
and iteratively refine the groupings. The key goal here is to understand,
which criteria in model structures are most important in determining
how the outputs are similar or different over time.

3 RELATED WORK

We discuss the related work in the context of the following threads of
research: i) automated clustering methods for handling different data
descriptors, and visual analytics approaches towards user-driven clus-
tering, ii) integration of user feedback for handling distance functions
in the context of high-dimensional data, and iii) visual analytics solu-
tions for similarity analysis of climate models.

3.1 Clustering Methods
Different clustering methods have been proposed for dealing with al-
ternative similarity spaces. Pfitzner et al. proposed a theoretical frame-
work for evaluating the quality of clusterings through pairwise estima-
tion of similarity [27]. The area of multi-view clustering [4] analyzes
cases when data can be split into two independent subsets. In that
case either subset is conditionally independent of each other and can
be used for learning. Similarly, authors have proposed approaches to-
wards combining multiple clustering results into one clustered output,
using similarity graphs [23]. Although we are also dealing with multi-
ple similarity functions, the goal is to reconcile one with respect to the
other.

In this context, the most relevant research in data mining commu-
nity looks into learning the relationship between different data descrip-
tor sets. The reconciliation idea is similar, in principle, to redescrip-
tion mining which looks at binary feature spaces and uses automated
algorithms for reconciling those spaces [29, 26]. While redescriptions
mostly deal with binary data, we handle both binary data and time-
varying data in our technique.

Our work is also inspired by the consensus clustering concept,
which attempts to find the consensus among multiple clustering al-
gorithms [24] in the context of gene expression data. Consensus clus-
tering has also been applied in other applications in biology and chem-
istry [9, 7]. In our case, while we are interested in the consensus be-
tween similarity of model structure and model output, we also aim at
quantifying and communicating the contribution of the different pa-
rameters towards that consensus or the lack thereof.

We adopt a human-in-the-loop approach, as automated methods
do not provide adequate transparency with respect to the clustering
parameters, and also in most cases, iteration is necessary to present
reconciliation results. Iterative refinement strategies for user-driven

clustering have been proposed for interacting with the intermediate
clustering results [30] for tuning parameters of the underlying algo-
rithms [33], and for making sense of dimension space and item space
of data [39]. Dealing with diverse similarity functions and at the same
time providing a high fidelity visual representation to domain experts
which can be interactively refined, are the key differentiators of our
work. The reconciliation workflow follows an adaptive process, where
the groupings on the model output side are used as an input to the
model structure side for: i) providing guidance to the scientists to-
wards finding similar groups with respect to diverse descriptors or cri-
teria, and ii) understanding the importance of criteria, which is handled
by an underlying optimization algorithm.

3.2 User Feedback for Adaptive Distance Functions
Recently, there has been a lot of interest in the visual analytics com-
munity for investigating how computation and tuning of distance func-
tions can be steered by user interaction and feedback. Gleicher pro-
posed a system called Explainers that attempts to alleviate the problem
of multidimensional projection, where the axes have no semantics, by
providing named axes based on experts’ input [10]. Eli et al. pre-
sented a system that allows an expert to interact directly with a visual
representation of the data to define an appropriate distance function,
without having to modify different parameters [5]. In our case, the
parameter space is of key interest to the user; therefore we create a vi-
sual representation of the parameters, and allow direct user interaction
with them. Our user feedback mechanism based weighted optimiza-
tion method is inspired by the work on manipulating distance functions
by Hu et al. [14]. However, the interactivity and conceptual implemen-
tation is different, since we are working with two different data spaces,
without using multidimensional projections. The modification of dis-
tance functions have also been used for spatial clustering, where user
selected groups are given as input to the algorithm [25]. Our reconcili-
ation method is similar, in principle to this approach, where the system
suggests grouping in one data space, based on the same in other space,
by a combination of user selection and computation.

3.3 Visual Analytics for Climate Modeling
Similarity analysis of model simulations is an emerging problem
in climate science. While visual analysis of simulation models
and their spatio-temporal variance have received attention in other
domains[1, 22], current visual analytics solutions for climate model
analysis [19] mostly focus on addressing the problem at the level of
a single model and understanding its spatio-temporal characteristics.
For example, Steed et al. introduced EDEN [36], a tool based on visu-
alizing correlations in an interactive parallel coordinates plot, focused
on multivariate analysis. Recently, UV-CDAT [40] has been developed
which is a provenance-enabled framework for climate data analysis.
However, like most other tools, UV-CDAT does not support multi-
model analysis [32]. To fill this gap, we recently developed Simi-
larityExplorer [28] for analyzing multi-model similarity with respect
to model outputs. In this case, we are not only comparing multiple
models, but also comparing two different data spaces: model struc-
ture and model output. Climate scientists have found that different
combinations of model structure criteria can potentially throw light
into different simulation output behavior [16]. However, to the best
of our knowledge, no visual analytics solution currently exists in cli-
mate science to address this problem. For developing a solution, for-
mulating an analysis paradigm precedes tool development because of
the complexities involved in handling multiple descriptor spaces. Al-
though there has been some work on hypothesis generation [17] and
task characterization [34] for climate science, they are not sufficient
for handling the reconciliation problem involving alternative similar-
ity spaces.

4 COORDINATED MULTIPLE VIEWS

An important component of the visual reconciliation technique is the
interaction between multiple views [31] of similarity spaces. In this
case we have binary model structure data and time-varying model out-
put data. As we had shown in Fig. 2, the goal is to let domain scientists
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Fig. 2: Conceptual model of visual reconciliation between binary
model structure data and time-varying model output data. Iterative
creation of groups and derivations of relationship between output si-
milarity and importance of the different model structure criteria. Blue
and orange indicate different groups of models.

rameters. This necessitates a visual analytics approach towards user-
driven group extraction and communication of relationships among the
groups, which are characterized by diverse descriptive parameters.

To achieve this goal, we introduce a novel visual analytics
paradigm: visual reconciliation, which is an iterative, human-in-the-
loop refinement strategy for reconciling alternative similarity spaces.
The reconciliation technique involves synergy among computational
methods, adaptive visual representations, and a flexible interaction
model, for communicating the relationships among the similarity
spaces. While iterative refinement strategies are not new in visual ana-
lytics [30, 33], sense-making of diverse characterization of data spaces
is still an emerging area of research [39]. In this context, we introduce
the problem of reconciling the characteristics of any data object with
respect to alternative similarity spaces, which in this case comprise of
boolean and time-varying attributes. The strength of the reconciliation
model stems from transparency in presentation and communication of
the similarity relationships among diverse data descriptors, with mini-
mal abstraction, and effective visual guidance through visual cues and
direct manipulation of the data. The design and interactions are mo-
tivated by domain experts’ need for visual representations with high
fidelity, and a simple yet effective interaction mechanism for browsing
through the parameters.

Our concept of visual reconciliation is grounded in our experience
of collaborating with climate scientists as part of the Multi-Scale Syn-
thesis and Terrestrial Model Inter-comparison Project (MsTMIP). An
open problem in climate science research is to analyze the effect that
similarity and differences in climate model structures have on the tem-
poral variance in model outputs. Recent research has shown model
structures can have significant impact on variability of outputs [16],
and that, some of these findings need to be further investigated in
details for exploring different hypotheses. To facilitate the scientific
analysis process, we propose an analysis paradigm for reconciling al-
ternative similarity spaces, that leverages the high bandwidth of human
perception system and exploits the pattern detection and optimization
capabilities of computing models [3, 18]. The key contributions of this
work stems from a visual reconciliation technique (Fig. 2) that i) helps
climate scientists understand the dependency between alternative sim-
ilarity spaces for climate models, ii) facilitates iterative refinement of
groups with the help of a feedback loop, and iii) allows flexible multi-
way interaction and exploration of the parameter space for reconciling
the importance of the model parameters with the model groupings.

2 MOTIVATION

Why do we need a new visual analytics technique? Reconciling al-
ternative similarity spaces is challenging on several counts: i) Data
descriptors can comprise of different attribute types. From a human
cognition point-of-view, reconciling the similarity of climate models
across two different visual representations is challenging. There needs
to be explicit encoding of similarity [11] that helps in efficient visual
comparison and preserve the mental model about similarity. Adapta-
tion of similarity needs to be reflected by dynamic linking between
views without causing change blindness; ii) For aligning two different
similarity spaces, say computed by two clustering algorithms, we will
in most cases get an approximate result. The result will need to be
iterated upon with subsequent parameter tuning to achieve higher ac-

curacy. This necessitates iteration, and therefore a human-in-the-loop
approach; iii) Domain experts need to trust the methodology working
at the back-end and interact with parameters for understanding their
importance. Fully automated methods do not allow that flexibility.
Thereby, a transparent representation with minimal abstraction is nec-
essary where parameters in similarity computation can be influenced
by user selections and filters.

As mentioned before, the technique is not restricted to climate mo-
dels, but for simplifying our discussion in this paper we specifically
discuss the applicability of the visual reconciliation technique in the
context of climate modeling.

2.1 Problem Characterization
Climate models, specifically Terrestrial Biosphere Models (TBM) are
now an important tool for understanding land-atmosphere carbon ex-
change across the globe. TBMs can be used to attribute carbon
sources (e.g., fires, farmlands) and sinks (e.g., forests, oceans) to ex-
plicit ecosystem processes. Each TBM is defined by the different input
parameters for characterizing these processes and outputs that quan-
tify the dependency between the carbon cycle and the ecosystem pro-
cesses. In the context of this work, each model has a dual representa-
tion of a weighted collection of criteria or descriptive parameters, and
time-series for different outputs, for different regions.
Model Structure: Model structure refers to the types of processes
considered (e.g., nutrient cycling, lateral transport of carbon), and how
these processes are represented through different criteria (e.g., pho-
tosynthetic formulation, temperature sensitivity, etc.) in the models.
A model simulation algorithm can have different implementations of
these processes. These implementations are different from each other
due to the presence or absence of the different criteria, that control the
specific process. For example, if a model simulates photosynthesis, a
group of criteria like simulating carbon pools, influence of
soil moisture, and stomatal conductance can be either
present or absent. Currently, climate scientists do not have an objec-
tive way of choosing one set of criteria over other, that can influence
the output. A model structure is a function of these criteria. If there
are n criteria, there can be 2n combinations of this function. In our
data, there are 4 different classes of criteria, for energy, carbon, veg-
etation, and respiration; with each class comprising of criteria, which
are about 20 to 30 in number.
Model Output: Model simulation outputs are ecosystem variables
that help climate scientists predict the rates of carbon dioxide increases
and changes in the atmosphere. For example, Gross Primary Produc-
tivity (GPP) is arguably the most important ecosystem variable, indi-
cating the total amount of energy that is fixed from sunlight, before
respiration and decomposition. Climate scientists need to understand
patterns of GPP in order to predict rates of carbon dioxide increases
and changes in atmospheric temperature.
Relationship between model structure and output: In previous
work, we had developed the SimilarityExplorer tool [28] for analyz-
ing similarity and differences among multifaceted model outputs. De-
spite the standardized protocol used to derive initial conditions, mod-
els show a high degree of variation for GPP, which can be attributed
to differences in model structural information [16].

Therefore, one of the open research questions in the TBM domain
is how similarity or differences in model output can be correlated with
that in model structures. The heterogeneity of model structure and
model output data makes it complex to derive one-to-one relationships
among them. Currently, in absence of an effective analysis technique,
scientists manually browse through the theoretically exponential num-
ber of model structure combinations, and analyze their output. This
process is inefficient and also ineffective due to the large parameter
space which can easily cause important patterns to be missed.

In the visual reconciliation technique, we provide a conceptual
framework that enable scientists to reconcile model structural similar-
ity with output similarity. We focus on using visual analytics methods
for addressing the following high-level analysis questions: i) given all
other factors are constant, analyze how different combination of pa-
rameters within model structure cause similarity or difference in model

output, and ii) by examining time-varying model outputs at different
regions, understand which combination of parameters cause the same
clusters or groups in model structure.

2.2 Visual Reconciliation Goals
As illustrated in Fig. 2, the visual reconciliation technique enables cli-
mate scientists to: i) analyze model structure and use that as feedback
for reconciling similarity or differences in model output, and ii) ana-
lyze model output and use that as a feedback for comparing similarity
or differences in model structure. The reconciliation model focuses on
three key goals:
Similarity encoding and linking: For providing guidance on choos-
ing the starting points of analysis, the visual representations of both
structure and output encode similarity functions. Subsequently, sci-
entists can use those initial seed points for reconciling structure char-
acteristics with output data, or conversely, for reconciling output data
with structure characteristics.
Flexible exploration of parameters: The visual feedback and inter-
action model adapts to the analysts’ workflow. Scientists can choose
different combinations of parameters, customize clusters on model
structure and model output side and accordingly the visual representa-
tions change, different indicators of similarity are highlighted.
Iterative refinement of groups: By incorporating user feedback in
conjunction with a computation model, the reconciliation technique
allows users to explore different group parameters in both data spaces
and iteratively refine the groupings. The key goal here is to understand,
which criteria in model structures are most important in determining
how the outputs are similar or different over time.

3 RELATED WORK

We discuss the related work in the context of the following threads of
research: i) automated clustering methods for handling different data
descriptors, and visual analytics approaches towards user-driven clus-
tering, ii) integration of user feedback for handling distance functions
in the context of high-dimensional data, and iii) visual analytics solu-
tions for similarity analysis of climate models.

3.1 Clustering Methods
Different clustering methods have been proposed for dealing with al-
ternative similarity spaces. Pfitzner et al. proposed a theoretical frame-
work for evaluating the quality of clusterings through pairwise estima-
tion of similarity [27]. The area of multi-view clustering [4] analyzes
cases when data can be split into two independent subsets. In that
case either subset is conditionally independent of each other and can
be used for learning. Similarly, authors have proposed approaches to-
wards combining multiple clustering results into one clustered output,
using similarity graphs [23]. Although we are also dealing with multi-
ple similarity functions, the goal is to reconcile one with respect to the
other.

In this context, the most relevant research in data mining commu-
nity looks into learning the relationship between different data descrip-
tor sets. The reconciliation idea is similar, in principle, to redescrip-
tion mining which looks at binary feature spaces and uses automated
algorithms for reconciling those spaces [29, 26]. While redescriptions
mostly deal with binary data, we handle both binary data and time-
varying data in our technique.

Our work is also inspired by the consensus clustering concept,
which attempts to find the consensus among multiple clustering al-
gorithms [24] in the context of gene expression data. Consensus clus-
tering has also been applied in other applications in biology and chem-
istry [9, 7]. In our case, while we are interested in the consensus be-
tween similarity of model structure and model output, we also aim at
quantifying and communicating the contribution of the different pa-
rameters towards that consensus or the lack thereof.

We adopt a human-in-the-loop approach, as automated methods
do not provide adequate transparency with respect to the clustering
parameters, and also in most cases, iteration is necessary to present
reconciliation results. Iterative refinement strategies for user-driven

clustering have been proposed for interacting with the intermediate
clustering results [30] for tuning parameters of the underlying algo-
rithms [33], and for making sense of dimension space and item space
of data [39]. Dealing with diverse similarity functions and at the same
time providing a high fidelity visual representation to domain experts
which can be interactively refined, are the key differentiators of our
work. The reconciliation workflow follows an adaptive process, where
the groupings on the model output side are used as an input to the
model structure side for: i) providing guidance to the scientists to-
wards finding similar groups with respect to diverse descriptors or cri-
teria, and ii) understanding the importance of criteria, which is handled
by an underlying optimization algorithm.

3.2 User Feedback for Adaptive Distance Functions
Recently, there has been a lot of interest in the visual analytics com-
munity for investigating how computation and tuning of distance func-
tions can be steered by user interaction and feedback. Gleicher pro-
posed a system called Explainers that attempts to alleviate the problem
of multidimensional projection, where the axes have no semantics, by
providing named axes based on experts’ input [10]. Eli et al. pre-
sented a system that allows an expert to interact directly with a visual
representation of the data to define an appropriate distance function,
without having to modify different parameters [5]. In our case, the
parameter space is of key interest to the user; therefore we create a vi-
sual representation of the parameters, and allow direct user interaction
with them. Our user feedback mechanism based weighted optimiza-
tion method is inspired by the work on manipulating distance functions
by Hu et al. [14]. However, the interactivity and conceptual implemen-
tation is different, since we are working with two different data spaces,
without using multidimensional projections. The modification of dis-
tance functions have also been used for spatial clustering, where user
selected groups are given as input to the algorithm [25]. Our reconcili-
ation method is similar, in principle to this approach, where the system
suggests grouping in one data space, based on the same in other space,
by a combination of user selection and computation.

3.3 Visual Analytics for Climate Modeling
Similarity analysis of model simulations is an emerging problem
in climate science. While visual analysis of simulation models
and their spatio-temporal variance have received attention in other
domains[1, 22], current visual analytics solutions for climate model
analysis [19] mostly focus on addressing the problem at the level of
a single model and understanding its spatio-temporal characteristics.
For example, Steed et al. introduced EDEN [36], a tool based on visu-
alizing correlations in an interactive parallel coordinates plot, focused
on multivariate analysis. Recently, UV-CDAT [40] has been developed
which is a provenance-enabled framework for climate data analysis.
However, like most other tools, UV-CDAT does not support multi-
model analysis [32]. To fill this gap, we recently developed Simi-
larityExplorer [28] for analyzing multi-model similarity with respect
to model outputs. In this case, we are not only comparing multiple
models, but also comparing two different data spaces: model struc-
ture and model output. Climate scientists have found that different
combinations of model structure criteria can potentially throw light
into different simulation output behavior [16]. However, to the best
of our knowledge, no visual analytics solution currently exists in cli-
mate science to address this problem. For developing a solution, for-
mulating an analysis paradigm precedes tool development because of
the complexities involved in handling multiple descriptor spaces. Al-
though there has been some work on hypothesis generation [17] and
task characterization [34] for climate science, they are not sufficient
for handling the reconciliation problem involving alternative similar-
ity spaces.

4 COORDINATED MULTIPLE VIEWS

An important component of the visual reconciliation technique is the
interaction between multiple views [31] of similarity spaces. In this
case we have binary model structure data and time-varying model out-
put data. As we had shown in Fig. 2, the goal is to let domain scientists
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Fig. 3: Matrix view for model structure data: Rows represent mod-
els and columns represent criteria. The variation of average implemen-
tation of a criterion for all models is shown by a color gradient from
light yellow to red, with red signifying higher implementation. In the
default view, all criteria have equal importance or weights, indicated
by the heights of the bars. Connectors help visually link the columns
and bars when they are reordered independently.

create and visualize groups on both sides, and understand the impor-
tance of the different criteria in creating those groups. In this section
we provide an overview of the different views and describe the basic
interactions between those.
Matrix View: To display the model structure data, which is a two-
dimensional matrix of 0’s and 1’s, we use a color-coded matrix Fig. 3,
which serves as a presence/absence representation of the different cri-
teria for the model structure. This is inspired from Bertin’s reorderable
matrix [2] and the subsequent interactive versions of the matrix [35].

Since the data is binary, we use two color hues: purple for denoting
presence and gray for absence. Visual salience of a matrix depends
on the order of the rows and columns and numerous techniques have
been developed till data fore reordering [6, 41] and seriation [20]. In
this case, the main motivation is to let the scientists visually separate
the criteria which have high average non-implementation (indicated
by 0’s) and those with high average implementation. For providing
visual cues on potential groups within the data, we reorder the rows
and columns, based on a function that puts the criteria, that are present,
to the upper left of the matrix; and pushes those that are absent, to the
bottom right.

The colored bars on top of the matrix serve a dual purpose. The
heights of the bars indicate the importance or weight of each criteria
for creating groups in model structure. The colors of the bars, with a
light yellow to red gradient indicate the average implementation of a
criterion. For example, as indicated in Fig. 3, the yellow bar indicates
that only three models have implemented that criterion. This gives a
quick overview of which criteria are most implemented, and which
ones, the least. The grey connectors preserve link among bars and
columns during reordering. This is important, especially when criteria
bars and the data columns in the matrix are reordered independently.

Groups can be created by selecting the different criteria. For a sin-
gle criterion, there can be two groups of models: those which do not
implement the criteria and have a value 0, and those which implement
criteria, and have a value 1. With multiple selections, there can be 2c

combinations, with c being a criterion. In most practical cases, only a
subset of these combinations exist in the data.
Time Series View: The model output data, which comprises of a time
series for each model, is displayed using a line chart comprising of
multiple time series (Fig. 4a). But effective visual comparison of si-
milarity among multiple groups is difficult using this view because of
two reasons. First, due to similar trajectory of the series, there is a
a lot of overlap, leading to clutter. Second, we are unable to show
the degree of clustering using this approach. To resolve these design
problems, we use small multiples. Small multiples [38] have been

used extensively in visualization, one problem with them is when there
are a large number of them, it becomes difficult to group them visually
without any additional cues. To prevent this, we create a small multiple
for each group. When there are time series for different region, a small
multiple can also be created for each region to compare groupings
across different regions.

Interaction: An overview of the steps in the interactive workflows
between the matrix view and the time series view are shown in Fig. 2.
These actions and operations are described below:
Create Groups: While reconciling model structure with model output,
scientists can first observe similarity among the models based on their
criteria, and accordingly create groups. This is part of the reconcili-
ation workflow described in Section 5.1. In the matrix view, groups
can be created on interaction. In the time-series view, groups are ei-
ther suggested by the system or selected by the user through direct
manipulation. This is part of the reconciliation workflow described in
Section 5.2.
Reflect: Creation of groups triggers reflection of the groups in both
views. On the matrix side, this is through grouping of the rows. On
the time series side, this is done by color coding the lines.
Split: In the time series view, groups can be reflected by splitting the
models into small multiples of model groups.
Optimize: While reconciling model output with structure, to handle
the variable importance of the criteria, an optimization step is neces-
sary. This workflow starts with the scientist selecting groups in the
output, which get reflected in the matrix view. Next they can choose
to optimize the importance or the weights, which leads to subsequent
iteration. This reconciliation workflow is described in detail in Sec-
tion 5.2.

5 RECONCILIATION WORKFLOWS

In this section we describe how we instantiate the conceptual model
of visual reconciliation described in Fig. 2 by incorporating the co-
ordinated multiple views, user interaction and an underlying computa-
tional model. The following workflows provide a step-by-step analysis
of how the views and interactions can be leveraged by climate scien-
tists for getting insight into structure similarity and output similarity.

5.1 Reconcile Structure Similarity with Output Similarity
In Fig. 4 we show the different steps in the workflow when the starting
point of analysis is the model structure. This workflow relies on visual
inspection of structure similarity by using matrix manipulation, and
observing the corresponding patterns in output by creation of small
multiples. The steps are described as follows:
Create groups: For reconciling model structure with output, it is ne-
cessary to first provide visual cues about which models are more sim-
ilar with respect to the different criteria. For this the default layout
of the matrix is sorted from left to right, by high to low average im-
plementation of the different criteria. This is indicated in Fig. 4b by
the transition of the importance bars from red to yellow. This gives
the scientists an idea of which criteria create more evenly sized groups
with 0’s and 1’s. The criteria which are colored dark red and light
yellow will create groups which are skewed: either too many models
implement the criteria or they do not. Selecting criteria which are deep
yellow and orange, gives more balanced clusters, with around 50 per
cent implementation. The highlighted column indicates the criterion
with the highest percentage of implementation.

The selected columns are indicated in Fig. 4c. These two criteria
create four groups. For showing groups of models within the matrix,
we introduce vertical gaps between groups, and then draw colored
borders around each group. Reordering by columns is also allowed
for each group independently as shown in Fig. 4c. In that case, the
weighted ordering of the bars is kept fixed. For visually indicating the
change in ordering we link the criteria by lines. Lines that are parallel
indicate that those criteria have not moved due to reordering and share
the same position for different groups. Since too many crossing lines
can cause clutter, we render the lines with varying opacity. For indi-
cating movement of criteria, we render those lines with higher opacity.

Fig. 4: Workflow for reconciling model structure with model output: This linear workflow relies on matrix manipulation techniques and
visual inspection of similarity patterns in the matrix view and the small multiple view.

To highlight where a certain criterion is within a group, on selection
we highlight the line by coloring it red as shown in the figure.

If columns in each group are reordered independently, that shows
the average implementation patterns for each group clearly. But it
becomes difficult to compare the implementations of a set of criteria
across the different groups. To enable this comparison, user can se-
lect a specific group which will be reordered column-wise, and the
columns in other groups will be sorted by that order. This is shown
in Fig. 4d, where the first group from the top is reordered based on
the columns, and other groups are aligned relative to that group. As
observed, this enables more efficient comparison relative all the imple-
mented and non-implemented criteria in the first group. For example,
we can easily find that the rightmost criteria are not implemented by
the first group of models, but is implemented by all other groups.
Reflect: The creation of groups in the structure is reflected in the out-
put by the color of the groups. Users can see the names of the models
on interaction.
Split: Small multiples can be created for each group (Fig. 4d). The
range of variability of models in each small multiple group reflects
how similar or different they are. This comparison is difficult to
achieve in a time series overloaded with too many lines. This also en-
ables a direct reconciliation of the quality of grouping in model struc-
ture with that of the output. For example, as shown in the figure, only
the orange group has low variability across models, denoting that the
groups based on the criteria in model structure do not create groups
where models produce similar output behavior.

5.2 Reconcile Output Similarity with Structure Similarity
To reconcile output with structure and complete the loop, we need to
account for the fact that different criteria can have different weights or
importance in the creation of groups. One of the goals of the reconcil-
iation models is to enable scientists explore different combinations of
these criteria that can create groups similar to those in the correspond-
ing model output. However, naive visual inspection is inefficient to
analyze all possible combinations without any guidance from the sys-
tem. For this, we developed a weighted optimization algorithm that
complements the human interaction. We describe the algorithm, pro-
vide an outline of its validation, and the corresponding workflow, as
follows.

5.2.1 Weighted Optimization

Using the model structure data and the model output data, we can cre-
ate two distance matrices. The eventual goal is to learn a similarity
function from the output distance matrix and modify the weights of
the criteria in the structure distance function for adapting to the output
similarity matrix. We describe the problem formulation below.

Let M̂ be a matrix representing the model output with size n× p and
M̃ represents the model structure with size n×q. Similarity in model
output is computed by the function d̂ : Rp ×Rp → R. This function

can be any specialized distance function such as Euclidean, Cosine,
etc. For the model structure we use weighted euclidean distance d̃w :

Rq ×Rq → R = ∑q
k=1

√
wk(yk

i − yk
j)

2, where wk is a weight assigned

to each dimension on M̃.
Using d̂ we encode the similarity information of the model output

in a distance matrix D̂. Our goal would be to find the weights’ vector
w = {w1, ...,wq} which could create a distance matrix for the model
structure D̃ containing approximately the same similarity information
as the model output. This problem can be formulated as the minimiza-
tion of the square error of the two distance functions:

minimize
w

n

∑
i=1

n

∑
j=1

‖d̃w(xi,x j)
2 − d̂(yi,y j)

2‖2

subject to wk ≥ 0, k = 1, . . . ,q.

(1)

where ‖.‖ is the L2 norm.
Using this vector w we can define which criteria are important in

the model structure to recreate the same similarity information from
the model output. Note that in the previous formulation we have not
taken into account the user’s feedback. The weights computation step
is similar to the one used in weighted metric multidimensional scal-
ing [12] technique.

If we want to incorporate user’s feedback into our formulation we
can multiply the square errors in Eq. 1 by a coefficient ri, j. This num-
ber represents the importance of each pair of elements in the mini-
mization problem. In our approach we allow the user to define groups
on the model output, then ri, j will be almost zero or zero for all the
elements i, j in a group. Now, we need to minimize:

minimize
w

n

∑
i=1

n

∑
j=1

ri, j‖d̃w(xi,x j)
2 − d̂(yi,y j)

2‖2

subject to wk ≥ 0, k = 1, . . . ,q.

(2)

Both equations above can be converted into quadratic problems
and solved using any quadratic programming solvers, such as JOp-
timizer [37] for Java or quadprog in MATLAB.

Our approach of incorporating user feedback for computation of
the weights is similar to the cognitive feedback model, namely V2PI-
MDS [15]. Mathematically the approaches are similar but conceptu-
ally they are different on two counts. First, in V2PI-MDS, the high-
dimensional data space is represented by the projected data space, and
the algorithm attempts to reconcile the two spaces. In our case how-
ever, the underlying data spaces are entirely different. We handle this
problem by using interactive visualization as a means to preserve the
mental model of the scientists about the characteristics of the differ-
ent data spaces. We could also have used multidimensional projec-
tions. But as found in previous work, domain scientists tend not to
trust the information loss caused by the dimensionality reduction and
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Fig. 3: Matrix view for model structure data: Rows represent mod-
els and columns represent criteria. The variation of average implemen-
tation of a criterion for all models is shown by a color gradient from
light yellow to red, with red signifying higher implementation. In the
default view, all criteria have equal importance or weights, indicated
by the heights of the bars. Connectors help visually link the columns
and bars when they are reordered independently.

create and visualize groups on both sides, and understand the impor-
tance of the different criteria in creating those groups. In this section
we provide an overview of the different views and describe the basic
interactions between those.
Matrix View: To display the model structure data, which is a two-
dimensional matrix of 0’s and 1’s, we use a color-coded matrix Fig. 3,
which serves as a presence/absence representation of the different cri-
teria for the model structure. This is inspired from Bertin’s reorderable
matrix [2] and the subsequent interactive versions of the matrix [35].

Since the data is binary, we use two color hues: purple for denoting
presence and gray for absence. Visual salience of a matrix depends
on the order of the rows and columns and numerous techniques have
been developed till data fore reordering [6, 41] and seriation [20]. In
this case, the main motivation is to let the scientists visually separate
the criteria which have high average non-implementation (indicated
by 0’s) and those with high average implementation. For providing
visual cues on potential groups within the data, we reorder the rows
and columns, based on a function that puts the criteria, that are present,
to the upper left of the matrix; and pushes those that are absent, to the
bottom right.

The colored bars on top of the matrix serve a dual purpose. The
heights of the bars indicate the importance or weight of each criteria
for creating groups in model structure. The colors of the bars, with a
light yellow to red gradient indicate the average implementation of a
criterion. For example, as indicated in Fig. 3, the yellow bar indicates
that only three models have implemented that criterion. This gives a
quick overview of which criteria are most implemented, and which
ones, the least. The grey connectors preserve link among bars and
columns during reordering. This is important, especially when criteria
bars and the data columns in the matrix are reordered independently.

Groups can be created by selecting the different criteria. For a sin-
gle criterion, there can be two groups of models: those which do not
implement the criteria and have a value 0, and those which implement
criteria, and have a value 1. With multiple selections, there can be 2c

combinations, with c being a criterion. In most practical cases, only a
subset of these combinations exist in the data.
Time Series View: The model output data, which comprises of a time
series for each model, is displayed using a line chart comprising of
multiple time series (Fig. 4a). But effective visual comparison of si-
milarity among multiple groups is difficult using this view because of
two reasons. First, due to similar trajectory of the series, there is a
a lot of overlap, leading to clutter. Second, we are unable to show
the degree of clustering using this approach. To resolve these design
problems, we use small multiples. Small multiples [38] have been

used extensively in visualization, one problem with them is when there
are a large number of them, it becomes difficult to group them visually
without any additional cues. To prevent this, we create a small multiple
for each group. When there are time series for different region, a small
multiple can also be created for each region to compare groupings
across different regions.

Interaction: An overview of the steps in the interactive workflows
between the matrix view and the time series view are shown in Fig. 2.
These actions and operations are described below:
Create Groups: While reconciling model structure with model output,
scientists can first observe similarity among the models based on their
criteria, and accordingly create groups. This is part of the reconcili-
ation workflow described in Section 5.1. In the matrix view, groups
can be created on interaction. In the time-series view, groups are ei-
ther suggested by the system or selected by the user through direct
manipulation. This is part of the reconciliation workflow described in
Section 5.2.
Reflect: Creation of groups triggers reflection of the groups in both
views. On the matrix side, this is through grouping of the rows. On
the time series side, this is done by color coding the lines.
Split: In the time series view, groups can be reflected by splitting the
models into small multiples of model groups.
Optimize: While reconciling model output with structure, to handle
the variable importance of the criteria, an optimization step is neces-
sary. This workflow starts with the scientist selecting groups in the
output, which get reflected in the matrix view. Next they can choose
to optimize the importance or the weights, which leads to subsequent
iteration. This reconciliation workflow is described in detail in Sec-
tion 5.2.

5 RECONCILIATION WORKFLOWS

In this section we describe how we instantiate the conceptual model
of visual reconciliation described in Fig. 2 by incorporating the co-
ordinated multiple views, user interaction and an underlying computa-
tional model. The following workflows provide a step-by-step analysis
of how the views and interactions can be leveraged by climate scien-
tists for getting insight into structure similarity and output similarity.

5.1 Reconcile Structure Similarity with Output Similarity
In Fig. 4 we show the different steps in the workflow when the starting
point of analysis is the model structure. This workflow relies on visual
inspection of structure similarity by using matrix manipulation, and
observing the corresponding patterns in output by creation of small
multiples. The steps are described as follows:
Create groups: For reconciling model structure with output, it is ne-
cessary to first provide visual cues about which models are more sim-
ilar with respect to the different criteria. For this the default layout
of the matrix is sorted from left to right, by high to low average im-
plementation of the different criteria. This is indicated in Fig. 4b by
the transition of the importance bars from red to yellow. This gives
the scientists an idea of which criteria create more evenly sized groups
with 0’s and 1’s. The criteria which are colored dark red and light
yellow will create groups which are skewed: either too many models
implement the criteria or they do not. Selecting criteria which are deep
yellow and orange, gives more balanced clusters, with around 50 per
cent implementation. The highlighted column indicates the criterion
with the highest percentage of implementation.

The selected columns are indicated in Fig. 4c. These two criteria
create four groups. For showing groups of models within the matrix,
we introduce vertical gaps between groups, and then draw colored
borders around each group. Reordering by columns is also allowed
for each group independently as shown in Fig. 4c. In that case, the
weighted ordering of the bars is kept fixed. For visually indicating the
change in ordering we link the criteria by lines. Lines that are parallel
indicate that those criteria have not moved due to reordering and share
the same position for different groups. Since too many crossing lines
can cause clutter, we render the lines with varying opacity. For indi-
cating movement of criteria, we render those lines with higher opacity.

Fig. 4: Workflow for reconciling model structure with model output: This linear workflow relies on matrix manipulation techniques and
visual inspection of similarity patterns in the matrix view and the small multiple view.

To highlight where a certain criterion is within a group, on selection
we highlight the line by coloring it red as shown in the figure.

If columns in each group are reordered independently, that shows
the average implementation patterns for each group clearly. But it
becomes difficult to compare the implementations of a set of criteria
across the different groups. To enable this comparison, user can se-
lect a specific group which will be reordered column-wise, and the
columns in other groups will be sorted by that order. This is shown
in Fig. 4d, where the first group from the top is reordered based on
the columns, and other groups are aligned relative to that group. As
observed, this enables more efficient comparison relative all the imple-
mented and non-implemented criteria in the first group. For example,
we can easily find that the rightmost criteria are not implemented by
the first group of models, but is implemented by all other groups.
Reflect: The creation of groups in the structure is reflected in the out-
put by the color of the groups. Users can see the names of the models
on interaction.
Split: Small multiples can be created for each group (Fig. 4d). The
range of variability of models in each small multiple group reflects
how similar or different they are. This comparison is difficult to
achieve in a time series overloaded with too many lines. This also en-
ables a direct reconciliation of the quality of grouping in model struc-
ture with that of the output. For example, as shown in the figure, only
the orange group has low variability across models, denoting that the
groups based on the criteria in model structure do not create groups
where models produce similar output behavior.

5.2 Reconcile Output Similarity with Structure Similarity
To reconcile output with structure and complete the loop, we need to
account for the fact that different criteria can have different weights or
importance in the creation of groups. One of the goals of the reconcil-
iation models is to enable scientists explore different combinations of
these criteria that can create groups similar to those in the correspond-
ing model output. However, naive visual inspection is inefficient to
analyze all possible combinations without any guidance from the sys-
tem. For this, we developed a weighted optimization algorithm that
complements the human interaction. We describe the algorithm, pro-
vide an outline of its validation, and the corresponding workflow, as
follows.

5.2.1 Weighted Optimization

Using the model structure data and the model output data, we can cre-
ate two distance matrices. The eventual goal is to learn a similarity
function from the output distance matrix and modify the weights of
the criteria in the structure distance function for adapting to the output
similarity matrix. We describe the problem formulation below.

Let M̂ be a matrix representing the model output with size n× p and
M̃ represents the model structure with size n×q. Similarity in model
output is computed by the function d̂ : Rp ×Rp → R. This function

can be any specialized distance function such as Euclidean, Cosine,
etc. For the model structure we use weighted euclidean distance d̃w :

Rq ×Rq → R = ∑q
k=1

√
wk(yk

i − yk
j)

2, where wk is a weight assigned

to each dimension on M̃.
Using d̂ we encode the similarity information of the model output

in a distance matrix D̂. Our goal would be to find the weights’ vector
w = {w1, ...,wq} which could create a distance matrix for the model
structure D̃ containing approximately the same similarity information
as the model output. This problem can be formulated as the minimiza-
tion of the square error of the two distance functions:

minimize
w

n

∑
i=1

n

∑
j=1

‖d̃w(xi,x j)
2 − d̂(yi,y j)

2‖2

subject to wk ≥ 0, k = 1, . . . ,q.

(1)

where ‖.‖ is the L2 norm.
Using this vector w we can define which criteria are important in

the model structure to recreate the same similarity information from
the model output. Note that in the previous formulation we have not
taken into account the user’s feedback. The weights computation step
is similar to the one used in weighted metric multidimensional scal-
ing [12] technique.

If we want to incorporate user’s feedback into our formulation we
can multiply the square errors in Eq. 1 by a coefficient ri, j. This num-
ber represents the importance of each pair of elements in the mini-
mization problem. In our approach we allow the user to define groups
on the model output, then ri, j will be almost zero or zero for all the
elements i, j in a group. Now, we need to minimize:

minimize
w

n

∑
i=1

n

∑
j=1

ri, j‖d̃w(xi,x j)
2 − d̂(yi,y j)

2‖2

subject to wk ≥ 0, k = 1, . . . ,q.

(2)

Both equations above can be converted into quadratic problems
and solved using any quadratic programming solvers, such as JOp-
timizer [37] for Java or quadprog in MATLAB.

Our approach of incorporating user feedback for computation of
the weights is similar to the cognitive feedback model, namely V2PI-
MDS [15]. Mathematically the approaches are similar but conceptu-
ally they are different on two counts. First, in V2PI-MDS, the high-
dimensional data space is represented by the projected data space, and
the algorithm attempts to reconcile the two spaces. In our case how-
ever, the underlying data spaces are entirely different. We handle this
problem by using interactive visualization as a means to preserve the
mental model of the scientists about the characteristics of the differ-
ent data spaces. We could also have used multidimensional projec-
tions. But as found in previous work, domain scientists tend not to
trust the information loss caused by the dimensionality reduction and
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prefer transparent visualizations, where the raw data is represented in-
stead [8].

Second, the interaction mechanism for providing feedback to the
computation model in the reconciliation model is also different than
the V2PI-MDS model. We allow users to define groups within the
data, as opposed to direct manipulation and movement of data points
in a projection; which is not applicable in our case. Our focus is on the
relationship between the weights of the dimensions and the similar-
ity perception they induce. As a result, we let users explore different
groupings by using the sorted weights and let them modify the views
accordingly. This results in a rich iterative analysis for reconciling the
two similarity spaces.
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Fig. 5: Synthetic data for validating weighted optimization. Using
the model output data in (a) and model structure data in (b), we validate
the accuracy of the optimization algorithm.

5.2.2 Validation

To validate our optimization, we use two synthetic datasets, one for
model output and the other one for model structure. The purpose of
this validation is to demonstrate the accuracy of the algorithm in the
best case scenario, i.e., when a perfect grouping based on some criteria
exists in the data. In most real-world cases, however the optimization
will only create an approximation of the input groups.

Our model output is a two-dimensional dataset and we use a scatter
plot to visualize it (Fig. 5a). We can notice that we have three well
defined groups {m1,m2,m3,m4}, {m5,m6,m7,m8} and {m9,m10}.
Fig. 5b shows our synthetic model structure data which contains
boolean values. Each row represents a different model (mi) and each
column a different criterion. The first two criteria were chosen specif-
ically to split the dataset into the same three groups as the model out-
put. For instance when criterion1 = 0 and criterion2 = 0 we can create
the group {m1,m2,m3,m4}.The next three columns are random values
(zero or one).

First, we solve the Eq. 1 using our synthetic dataset and
Euclidean distance for the model output; and we get w =
{1.00,0.14,0.06,0.08,0.10}. We use the classical multidimensional
scaling algorithm to project the model structure data using the
Weighted Euclidean distance. We normalized the weights between
zero and one for visualization purpose, but the weighted Euclidean
distance uses the unnormalized weights. Fig. 6a shows the two-
dimensional data. Our vector w was able to capture the similarity
information from the model output. For example, {m1,m2,m3,m4}
is a well defined group. Even though {m5,m6,m7,m8} and {m9,m10}
are not mixed, they are not well defined groups.

Next, we incorporate user feedback and set the coefficient ri, j
to zero for all pair combinations in the groups {m1,m2,m3,m4},
{m5,m6,m7,m8} and {m9,m10}. Solving Eq. 2 we get the vector
w = {1.00,0.77,0.07,0.08,0.10}. Fig. 6b shows the two-dimensional
projection of the model structure using the weighted Euclidean dis-
tance and w. We notice that now the three groups are well de-
fined. Our algorithm gave the highest weights to the first two criteria
(criterion1 = 1.0 and criterion2 = 0.7) which we already knew to have

the best combination to split the model structure in the same groups as
the model output.
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Fig. 6: Validation of user feedback based optimization in the MDS
plots. As we can observe in (b), optimization based on user’s feedback
gives highest weights to the two criteria which are splitting the models
into three groups.

These two experiments show that our formulation accurately gives
the highest weights to the most relevant criteria for splitting models
into groups, and this can be used to guide the user during the explo-
ration process. In Section 6 we will show how this approach works
with real data; where in most cases, an approximation of the output
group is produced by the algorithm.

5.2.3 Workflow

In Fig. 7 we show how the complete loop starting from output to struc-
ture, and back, is executed by user interaction and the optimization
algorithm described above. This workflow relies on human inspection
of structure similarity through manipulation of the matrix view and
observation of the corresponding output in the small multiples of time
series. The steps are described as follows:
Create groups in output: For suggesting groups of similar outputs,
the system uses clustering of time series by Euclidean distance or cor-
relation (Fig. 7a). While other metrics are available for clustering time
series, for this case scientists were only interested in these two. Ac-
cordingly, the clusters are updated in the output view.
Reflect in structure: These clusters are reflected in the model struc-
ture side by reordering the matrix based on the groups (Fig. 7b). All
the criteria are given equal weights by default, as indicated by the uni-
form height of the bars. The two views are linked by the color of the
groups. Users can also select groups through direct manipulation of
the time series in the output view.
Optimize weights: Next on observing the system-defined clusters,
one can choose to optimize the weights for the criteria on the struc-
ture side. As shown in Fig. 7c, the columns are reordered from left
to right based on weights. These weights serve as hints to the user
for creating groups on the structure side. The groups are not immedi-
ately created to prevent change blindness. The system needs the user
to intervene to select the criteria, based on which the groups can be
created.

The underlying optimization algorithm as described earlier creates
an approximate grouping based on the input. In many cases, as shown
in the figure, the highest weight may not give a perfect grouping. By
perfect grouping we mean, the optimization algorithm is able to create
the exact same groups as the input from the output side. In most cases,
the weights for an exact solution might not even exist. By using the
optimization, all we get is a group of structure clusters which are as
closely aligned with the output as possible.
Create groups in structure: Based on the suggested weights, a user
can select the two highest weights and create groups, as shown in
Fig. 7d. There are four possible combinations of these two crite-
ria (with 0’s and 1’s) and all of them are shown in their own group.
In many cases all possible combinations might not exist.
Reflect/Split in output:The creation of the groups are also reflected
on the output side by indicating the group membership of each model

Fig. 7: Workflow for reconciling output with structure through feedback: This iterative workflow relies on weighted optimization based on
Equations 1 and 2, and human initiated parameter tuning and selection for reconciling model structure similarity with model output similarity
and vice versa.
by color-coding or by creation of small multiples (Fig. 7e), the output
groups created are not perfect, as they do not exactly match with the
output groups in the previous step. From this however, the scientists
can judge the effect of the two criteria on model output. For example,
if for the selected criteria, the presence or absence does not have an
impact on the output, that will be reflected in the time series, by their
spread or lack of any significant correlation. For inspecting if com-
bining other criteria can give a more perfect grouping on the structure
side, that matches with the output, scientists need to continue the iter-
ation and repeat the previous steps.

6 CASE STUDY

We collaborated with 3 climate scientists from the Oak Ridge National
Laboratory and from the USDA Forest Service, as part of the Multi-
Scale Synthesis and Terrestrial Model Inter-comparison Project (MsT-
MIP). Each of them have at least ten years of experience in climate
modeling and model inter-comparison. MsTMIP is a formal multi-
scale synthesis, with prescribed environmental and meteorological
drivers shared among model teams, and simulations standardized to fa-
cilitate comparison with other model results and observations through
an integrated evaluation framework [16]. One key goal of MsTMIP
is to understand the sources and sinks of the greenhouse gas carbon
dioxide, the evolution of those fluxes with time, and their interaction
with climate change. To accomplish these goals, inter-annual and sea-
sonal variability of models need to be examined using multiple time-
series. Early results from MsTMIP have shown that variation in model
outputs could be traced to the same in model structure. Using visual
reconciliation, climate scientists wanted to further understand whether
similarity or differences in model structure play a role in the inter-
annual variability of Gross Primary Productivity (GPP) for different
regions. Inclusion of particular combinations of simulated processes
may exaggerate GPP or its timing more than any component in isola-
tion. Inclusion of a patently incorrect model structure could dramati-
cally sour model output by itself.

We provided our collaborators with an executable, which they used
for a month and reported back to us on their findings, as reported
below. Then we conducted face-to-face interviews about the usage
of the technique and got positive feedback on how the technique is
a first step towards solving the problem of reconciling model struc-
ture with output. We describe two cases where our collaborators

could find relationships between model structure and model output
using a prototype implementation of the visual reconciliation tech-
nique. The model structure data is segmented into four classes: en-
ergy, carbon, vegetation, and respiration. In this case the scien-
tists wanted to understand the relationship between criteria belong-
ing to energy and vegetation, and their GPP variability in Polar and
North American Temperate regions. Each of the model struc-
ture datasets consist of about 15 models and about 20 to 30 criteria.

6.1 Reconciling seasonal cycle similarity with structural
similarity

The seasonal cycle of a climate model is given by the trajectory of
the time series and the peaks and crests for the different months in
a year. Exploring the impact of seasonal cycles for different mod-
els with respect to GPP is an important goal in climate science, since
the amount and timing of energy fixation provides a baseline for al-
most all other ecosystem functions. Models must accurately capture
this behavior for all regions and conditions before other, more subtle
ecosystem processes, can be accurately modeled. The motivation for
this scenario was to find if there is any dependency between regional
seasonal cycles of models and included model structures with respect
to the overarching energy criteria.

The scientists started their analysis in the Polar region by select-
ing the M9 and M10 models which appeared to be similar with respect
to both their GPP values and the timing of their seasonal cycles, as
shown in Fig. 8a. Their intent was to observe which energy parameter
causes M9 and M10 to behave similarly in one group, and the rest in
another. They optimized the matrix view to find the most important
criterion, which was found to be Stomatal conductance. After
this step they chose to select this criterion to split the models into two
groups, shown in Fig. 8b and reflected in Fig. 8c. The underlying opti-
mization algorithm thus gave a perfect grouping, with the models that
implement Stomatal conductance in the orange group, while the rest
are in another group. The climate scientists were already able to infer
that Stomatal conductance has strong impact on the seasonal
cycles of M9 and M10.

Next the scientists selected the M6 and M7 models in the
North American Temperate (NAT) region, which appear to be
similar with respect to their seasonal cycle and GPP output (Fig. 8d).
This grouping is already intuitive and inspires confidence, because of
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prefer transparent visualizations, where the raw data is represented in-
stead [8].

Second, the interaction mechanism for providing feedback to the
computation model in the reconciliation model is also different than
the V2PI-MDS model. We allow users to define groups within the
data, as opposed to direct manipulation and movement of data points
in a projection; which is not applicable in our case. Our focus is on the
relationship between the weights of the dimensions and the similar-
ity perception they induce. As a result, we let users explore different
groupings by using the sorted weights and let them modify the views
accordingly. This results in a rich iterative analysis for reconciling the
two similarity spaces.
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Fig. 5: Synthetic data for validating weighted optimization. Using
the model output data in (a) and model structure data in (b), we validate
the accuracy of the optimization algorithm.

5.2.2 Validation

To validate our optimization, we use two synthetic datasets, one for
model output and the other one for model structure. The purpose of
this validation is to demonstrate the accuracy of the algorithm in the
best case scenario, i.e., when a perfect grouping based on some criteria
exists in the data. In most real-world cases, however the optimization
will only create an approximation of the input groups.

Our model output is a two-dimensional dataset and we use a scatter
plot to visualize it (Fig. 5a). We can notice that we have three well
defined groups {m1,m2,m3,m4}, {m5,m6,m7,m8} and {m9,m10}.
Fig. 5b shows our synthetic model structure data which contains
boolean values. Each row represents a different model (mi) and each
column a different criterion. The first two criteria were chosen specif-
ically to split the dataset into the same three groups as the model out-
put. For instance when criterion1 = 0 and criterion2 = 0 we can create
the group {m1,m2,m3,m4}.The next three columns are random values
(zero or one).

First, we solve the Eq. 1 using our synthetic dataset and
Euclidean distance for the model output; and we get w =
{1.00,0.14,0.06,0.08,0.10}. We use the classical multidimensional
scaling algorithm to project the model structure data using the
Weighted Euclidean distance. We normalized the weights between
zero and one for visualization purpose, but the weighted Euclidean
distance uses the unnormalized weights. Fig. 6a shows the two-
dimensional data. Our vector w was able to capture the similarity
information from the model output. For example, {m1,m2,m3,m4}
is a well defined group. Even though {m5,m6,m7,m8} and {m9,m10}
are not mixed, they are not well defined groups.

Next, we incorporate user feedback and set the coefficient ri, j
to zero for all pair combinations in the groups {m1,m2,m3,m4},
{m5,m6,m7,m8} and {m9,m10}. Solving Eq. 2 we get the vector
w = {1.00,0.77,0.07,0.08,0.10}. Fig. 6b shows the two-dimensional
projection of the model structure using the weighted Euclidean dis-
tance and w. We notice that now the three groups are well de-
fined. Our algorithm gave the highest weights to the first two criteria
(criterion1 = 1.0 and criterion2 = 0.7) which we already knew to have

the best combination to split the model structure in the same groups as
the model output.
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Fig. 6: Validation of user feedback based optimization in the MDS
plots. As we can observe in (b), optimization based on user’s feedback
gives highest weights to the two criteria which are splitting the models
into three groups.

These two experiments show that our formulation accurately gives
the highest weights to the most relevant criteria for splitting models
into groups, and this can be used to guide the user during the explo-
ration process. In Section 6 we will show how this approach works
with real data; where in most cases, an approximation of the output
group is produced by the algorithm.

5.2.3 Workflow

In Fig. 7 we show how the complete loop starting from output to struc-
ture, and back, is executed by user interaction and the optimization
algorithm described above. This workflow relies on human inspection
of structure similarity through manipulation of the matrix view and
observation of the corresponding output in the small multiples of time
series. The steps are described as follows:
Create groups in output: For suggesting groups of similar outputs,
the system uses clustering of time series by Euclidean distance or cor-
relation (Fig. 7a). While other metrics are available for clustering time
series, for this case scientists were only interested in these two. Ac-
cordingly, the clusters are updated in the output view.
Reflect in structure: These clusters are reflected in the model struc-
ture side by reordering the matrix based on the groups (Fig. 7b). All
the criteria are given equal weights by default, as indicated by the uni-
form height of the bars. The two views are linked by the color of the
groups. Users can also select groups through direct manipulation of
the time series in the output view.
Optimize weights: Next on observing the system-defined clusters,
one can choose to optimize the weights for the criteria on the struc-
ture side. As shown in Fig. 7c, the columns are reordered from left
to right based on weights. These weights serve as hints to the user
for creating groups on the structure side. The groups are not immedi-
ately created to prevent change blindness. The system needs the user
to intervene to select the criteria, based on which the groups can be
created.

The underlying optimization algorithm as described earlier creates
an approximate grouping based on the input. In many cases, as shown
in the figure, the highest weight may not give a perfect grouping. By
perfect grouping we mean, the optimization algorithm is able to create
the exact same groups as the input from the output side. In most cases,
the weights for an exact solution might not even exist. By using the
optimization, all we get is a group of structure clusters which are as
closely aligned with the output as possible.
Create groups in structure: Based on the suggested weights, a user
can select the two highest weights and create groups, as shown in
Fig. 7d. There are four possible combinations of these two crite-
ria (with 0’s and 1’s) and all of them are shown in their own group.
In many cases all possible combinations might not exist.
Reflect/Split in output:The creation of the groups are also reflected
on the output side by indicating the group membership of each model

Fig. 7: Workflow for reconciling output with structure through feedback: This iterative workflow relies on weighted optimization based on
Equations 1 and 2, and human initiated parameter tuning and selection for reconciling model structure similarity with model output similarity
and vice versa.
by color-coding or by creation of small multiples (Fig. 7e), the output
groups created are not perfect, as they do not exactly match with the
output groups in the previous step. From this however, the scientists
can judge the effect of the two criteria on model output. For example,
if for the selected criteria, the presence or absence does not have an
impact on the output, that will be reflected in the time series, by their
spread or lack of any significant correlation. For inspecting if com-
bining other criteria can give a more perfect grouping on the structure
side, that matches with the output, scientists need to continue the iter-
ation and repeat the previous steps.

6 CASE STUDY

We collaborated with 3 climate scientists from the Oak Ridge National
Laboratory and from the USDA Forest Service, as part of the Multi-
Scale Synthesis and Terrestrial Model Inter-comparison Project (MsT-
MIP). Each of them have at least ten years of experience in climate
modeling and model inter-comparison. MsTMIP is a formal multi-
scale synthesis, with prescribed environmental and meteorological
drivers shared among model teams, and simulations standardized to fa-
cilitate comparison with other model results and observations through
an integrated evaluation framework [16]. One key goal of MsTMIP
is to understand the sources and sinks of the greenhouse gas carbon
dioxide, the evolution of those fluxes with time, and their interaction
with climate change. To accomplish these goals, inter-annual and sea-
sonal variability of models need to be examined using multiple time-
series. Early results from MsTMIP have shown that variation in model
outputs could be traced to the same in model structure. Using visual
reconciliation, climate scientists wanted to further understand whether
similarity or differences in model structure play a role in the inter-
annual variability of Gross Primary Productivity (GPP) for different
regions. Inclusion of particular combinations of simulated processes
may exaggerate GPP or its timing more than any component in isola-
tion. Inclusion of a patently incorrect model structure could dramati-
cally sour model output by itself.

We provided our collaborators with an executable, which they used
for a month and reported back to us on their findings, as reported
below. Then we conducted face-to-face interviews about the usage
of the technique and got positive feedback on how the technique is
a first step towards solving the problem of reconciling model struc-
ture with output. We describe two cases where our collaborators

could find relationships between model structure and model output
using a prototype implementation of the visual reconciliation tech-
nique. The model structure data is segmented into four classes: en-
ergy, carbon, vegetation, and respiration. In this case the scien-
tists wanted to understand the relationship between criteria belong-
ing to energy and vegetation, and their GPP variability in Polar and
North American Temperate regions. Each of the model struc-
ture datasets consist of about 15 models and about 20 to 30 criteria.

6.1 Reconciling seasonal cycle similarity with structural
similarity

The seasonal cycle of a climate model is given by the trajectory of
the time series and the peaks and crests for the different months in
a year. Exploring the impact of seasonal cycles for different mod-
els with respect to GPP is an important goal in climate science, since
the amount and timing of energy fixation provides a baseline for al-
most all other ecosystem functions. Models must accurately capture
this behavior for all regions and conditions before other, more subtle
ecosystem processes, can be accurately modeled. The motivation for
this scenario was to find if there is any dependency between regional
seasonal cycles of models and included model structures with respect
to the overarching energy criteria.

The scientists started their analysis in the Polar region by select-
ing the M9 and M10 models which appeared to be similar with respect
to both their GPP values and the timing of their seasonal cycles, as
shown in Fig. 8a. Their intent was to observe which energy parameter
causes M9 and M10 to behave similarly in one group, and the rest in
another. They optimized the matrix view to find the most important
criterion, which was found to be Stomatal conductance. After
this step they chose to select this criterion to split the models into two
groups, shown in Fig. 8b and reflected in Fig. 8c. The underlying opti-
mization algorithm thus gave a perfect grouping, with the models that
implement Stomatal conductance in the orange group, while the rest
are in another group. The climate scientists were already able to infer
that Stomatal conductance has strong impact on the seasonal
cycles of M9 and M10.

Next the scientists selected the M6 and M7 models in the
North American Temperate (NAT) region, which appear to be
similar with respect to their seasonal cycle and GPP output (Fig. 8d).
This grouping is already intuitive and inspires confidence, because of



1930 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS,   VOL. 20,   NO. 12,   DECEMBER 2014

Fig. 8: Reconciling seasonal cycle with model structure similarity using the workflow described in Section 5.1. (a) Initial user selection in
Polar region output. (b) Weighted optimization, (c) Corresponding output; (d) Initial user selection in North American Temperate region, (e)
Creating groups based on the first three criteria after optimization. (f) Small multiple groups of models.

its consistency with the known genealogical relationship of these two
models as siblings. With the same goal as the previous case, they
optimized the matrix view, and found that Prognostic change
was the most important structural criterion to approximately create the
two groups. This structural criterion provided a near-perfect segmen-
tation, except for the M1 model, which also implements this param-
eter, as shown in Fig. 8e. In an attempt to get the exact segmen-
tation, they selected the next two most important criteria, which are
prescribed leaf index and RTS2-stream. M6 and M7 im-
plement both of these criteria and are in one output group, while the
other green output group is split into three sub-groups based on their
implementation of these three criteria. The implementation of these
three criteria thus has a significant effect on the grouping of these
two models with respect to their GPP. The scientists could continue
in this way to find more inferences from the implementation or non-
implementation of these three structural criteria, by further observing
their output in small multiples, as shown in Fig. 8f. This shows that
the blue group, none of which implement Prognostic change,
but all of which implemented the other two, show a greater spread of
GPP output values than any other group. In this way, the scientists
could reconcile the impact of different energy criteria on the seasonal
cycle and regional variability of GPP.

6.2 Iterative exploration of structure-output dependency
In this case, the scientists started by looking at the model structure data
for discovering structure criteria that could explain model groups ha-
ving high and low GPP values across both Polar and NAT regions. A
simple sequential search for criteria is inefficient for reconciliation. To
start their analysis, as shown in Fig. 9a, the matrix view is first sorted
from left to right by the columns having high numbers of implemen-
tations. The sorting enabled the scientists to group using a criterion
that would cause balanced clusters, i.e., divide the models into equal
groups. In this view, these criteria would lie in the center, having or-
ange or deep yellow color. In course of this exploration, they found
that the canopy/stomatal conductance whole canopy
structural criterion splits the group into nearly equal halves. These
clusters are represented in the output by green, i.e., not implement-
ing that criterion, and orange, i.e., implementing that criterion. Fur-
ther, looking at the output, as shown in Fig. 9b, scientists found that
the orange group has higher GPP values and the green group has

lower values. In other words, the models that have implemented
stomatal conductance have higher GPP values than the ones
that have not implemented this criterion. This grouping is consistent
for the North American Temperate region, with the exception
of the M1 model, as shown in Fig. 9c.

Next, the scientists wanted to verify whether by performing op-
timization, they can get the same criterion to be the most impor-
tant for the behavior of GPP within the Polar region, which rep-
resents a different, extreme combination of ecological conditions.
They selected the green group, as shown in Fig. 9d, and then
chose to optimize the matrix view. They found the same crite-
rion (canopy/stomatal conductance whole canopy) to
have the highest weight, reinforcing the reconciling power of this same
group of model structures for explaining differences in GPP across two
extreme eco-regions. Thus, the criterion that they discovered interac-
tively could be verified algorithmically. Note that, as shown in Fig. 9d,
only one of the models is classified in a different group than the user-
selected group.

For the NAT region, the scientists wanted to drill-down to de-
termine what was causing M1 to behave differently, as was found
during the initial exploration. They defined two groups, with
one of them only having M1 as shown in Fig. 9g. Once they
chose to optimize the matrix, they found that no single criterion
could produce the same output groups. However, by combining
the two most important criteria, which are vegetation heat
and canopy-stomatal sunlit shaded (Fig. 9h), M1 was
put in a separate group by itself. It was the only model that
implemented both of these criteria. Additionally, the scientists
also saw that the models in the green group, which did not im-
plement any of these criteria, had a larger range of GPP vari-
ability than the other model groups (Fig. 9i). They concluded
that,by allowing both more- and less-productive sunlit
and shaded canopy leaves, respectively, models which imple-
ment these differential processes seem to stabilize the production of
GPP, even across extremely different eco-regions, possibly accurately
reflecting the actual effect of these processes in nature.

7 CONCLUSION AND FUTURE WORK

We have presented a novel visual reconciliation technique, using
which climate scientists can understand the relationships between

Fig. 9: Iterative exploration of structure-output dependency using a combination of the two workflows for reconciliation. (a) Initial user
creation of groups; (b,c) Corresponding groups in regions; (d,e,f) workflow for verifying user-defined groups; (g,h,i) workflow for finding the
criteria that can potentially cause M1 to be an outlier, and then looking at range of variability in small multiple outputs.

model structure similarity and model output similarity.
Impact: By exploiting visual linking and user-steered optimization,
we are able to communicate to the scientists, the effects of different
groups of criteria on the variability of model output. Using this tech-
nique, scientists could form and explore hypotheses about reconciling
the two different similarity spaces, which was not possible before, yet
which is crucial for refining climate models; which is reflected in the
following comment by one of our collaborators: “Due to imperfect
knowledge, understanding, and modeling, correlations in the climate
modeling domain may be weakly exhibited at best. This inherent weak-
ness poses the greatest challenge to recognition and reconciliation of
such correlations; yet, it is only through the reconciliation of such
correlations upon which progress in improving climate models rests.”
Regarding the effectiveness of the reconciliation technique, another
collaborator observed that: “One of the most valuable functions of
the technique is to effectively remove from consideration the compli-
cations created from model structures, that have little to no effect on
outputs, and to effortlessly show and rank the differential effects on
output created by seemingly related or unrelated model structures.”
Challenges: There are several challenges that need to be addressed.
First, we are using about 15 models and not more than 30 criteria.
To make the reconciliation workflow more scalable, we plan to work
on making the matrix and the small multiples more optimized with
respect to the similarity metrics. For extending the matrix to a more
general case with continuous data, we will use clustering algorithms
and row reordering operations [6, 41] for visual display of the groups.
For handling the scalability issue, we also want to focus on dynamic
filtering strategies for letting users focus on a subset of groups or pa-
rameters and drive the optimization process with more flexibility. Sec-
ond, we currently use a simple time model. The success of our ap-

proach will lead us to extend this framework to more complex models
of time, where more sophisticated brushing and querying [13] needs
to be applied. Finally, we are handling only two types of descriptors.
Increasing diversity of descriptor data will pose challenges for a high
granularity visual representation, and also for reducing the visual com-
plexity in how the views interact. We plan to address these challenges
in future research with data from various application domains.
Generalization: As observed before, the visual reconciliation tech-
nique is not restricted to the climate science domain. As a next step,
we will apply this technique in the healthcare domain, where the goal
is to reconcile patient similarity with drug similarity for personalized
medicine development [42]. Another potential application is in the
product design domain. For example in the automotive market, car
models can be qualified by multitude of features. It will be of interest
to automotive companies to reconcile similarity of car models based
on their descriptors, with the similarity based on transaction data. In
short, we posit that visual reconciliation can potentially serve as an
important analytics paradigm for making sense of the ever-growing
variety of available data and their diverse similarity criteria.
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Fig. 8: Reconciling seasonal cycle with model structure similarity using the workflow described in Section 5.1. (a) Initial user selection in
Polar region output. (b) Weighted optimization, (c) Corresponding output; (d) Initial user selection in North American Temperate region, (e)
Creating groups based on the first three criteria after optimization. (f) Small multiple groups of models.

its consistency with the known genealogical relationship of these two
models as siblings. With the same goal as the previous case, they
optimized the matrix view, and found that Prognostic change
was the most important structural criterion to approximately create the
two groups. This structural criterion provided a near-perfect segmen-
tation, except for the M1 model, which also implements this param-
eter, as shown in Fig. 8e. In an attempt to get the exact segmen-
tation, they selected the next two most important criteria, which are
prescribed leaf index and RTS2-stream. M6 and M7 im-
plement both of these criteria and are in one output group, while the
other green output group is split into three sub-groups based on their
implementation of these three criteria. The implementation of these
three criteria thus has a significant effect on the grouping of these
two models with respect to their GPP. The scientists could continue
in this way to find more inferences from the implementation or non-
implementation of these three structural criteria, by further observing
their output in small multiples, as shown in Fig. 8f. This shows that
the blue group, none of which implement Prognostic change,
but all of which implemented the other two, show a greater spread of
GPP output values than any other group. In this way, the scientists
could reconcile the impact of different energy criteria on the seasonal
cycle and regional variability of GPP.

6.2 Iterative exploration of structure-output dependency
In this case, the scientists started by looking at the model structure data
for discovering structure criteria that could explain model groups ha-
ving high and low GPP values across both Polar and NAT regions. A
simple sequential search for criteria is inefficient for reconciliation. To
start their analysis, as shown in Fig. 9a, the matrix view is first sorted
from left to right by the columns having high numbers of implemen-
tations. The sorting enabled the scientists to group using a criterion
that would cause balanced clusters, i.e., divide the models into equal
groups. In this view, these criteria would lie in the center, having or-
ange or deep yellow color. In course of this exploration, they found
that the canopy/stomatal conductance whole canopy
structural criterion splits the group into nearly equal halves. These
clusters are represented in the output by green, i.e., not implement-
ing that criterion, and orange, i.e., implementing that criterion. Fur-
ther, looking at the output, as shown in Fig. 9b, scientists found that
the orange group has higher GPP values and the green group has

lower values. In other words, the models that have implemented
stomatal conductance have higher GPP values than the ones
that have not implemented this criterion. This grouping is consistent
for the North American Temperate region, with the exception
of the M1 model, as shown in Fig. 9c.

Next, the scientists wanted to verify whether by performing op-
timization, they can get the same criterion to be the most impor-
tant for the behavior of GPP within the Polar region, which rep-
resents a different, extreme combination of ecological conditions.
They selected the green group, as shown in Fig. 9d, and then
chose to optimize the matrix view. They found the same crite-
rion (canopy/stomatal conductance whole canopy) to
have the highest weight, reinforcing the reconciling power of this same
group of model structures for explaining differences in GPP across two
extreme eco-regions. Thus, the criterion that they discovered interac-
tively could be verified algorithmically. Note that, as shown in Fig. 9d,
only one of the models is classified in a different group than the user-
selected group.

For the NAT region, the scientists wanted to drill-down to de-
termine what was causing M1 to behave differently, as was found
during the initial exploration. They defined two groups, with
one of them only having M1 as shown in Fig. 9g. Once they
chose to optimize the matrix, they found that no single criterion
could produce the same output groups. However, by combining
the two most important criteria, which are vegetation heat
and canopy-stomatal sunlit shaded (Fig. 9h), M1 was
put in a separate group by itself. It was the only model that
implemented both of these criteria. Additionally, the scientists
also saw that the models in the green group, which did not im-
plement any of these criteria, had a larger range of GPP vari-
ability than the other model groups (Fig. 9i). They concluded
that,by allowing both more- and less-productive sunlit
and shaded canopy leaves, respectively, models which imple-
ment these differential processes seem to stabilize the production of
GPP, even across extremely different eco-regions, possibly accurately
reflecting the actual effect of these processes in nature.

7 CONCLUSION AND FUTURE WORK

We have presented a novel visual reconciliation technique, using
which climate scientists can understand the relationships between

Fig. 9: Iterative exploration of structure-output dependency using a combination of the two workflows for reconciliation. (a) Initial user
creation of groups; (b,c) Corresponding groups in regions; (d,e,f) workflow for verifying user-defined groups; (g,h,i) workflow for finding the
criteria that can potentially cause M1 to be an outlier, and then looking at range of variability in small multiple outputs.

model structure similarity and model output similarity.
Impact: By exploiting visual linking and user-steered optimization,
we are able to communicate to the scientists, the effects of different
groups of criteria on the variability of model output. Using this tech-
nique, scientists could form and explore hypotheses about reconciling
the two different similarity spaces, which was not possible before, yet
which is crucial for refining climate models; which is reflected in the
following comment by one of our collaborators: “Due to imperfect
knowledge, understanding, and modeling, correlations in the climate
modeling domain may be weakly exhibited at best. This inherent weak-
ness poses the greatest challenge to recognition and reconciliation of
such correlations; yet, it is only through the reconciliation of such
correlations upon which progress in improving climate models rests.”
Regarding the effectiveness of the reconciliation technique, another
collaborator observed that: “One of the most valuable functions of
the technique is to effectively remove from consideration the compli-
cations created from model structures, that have little to no effect on
outputs, and to effortlessly show and rank the differential effects on
output created by seemingly related or unrelated model structures.”
Challenges: There are several challenges that need to be addressed.
First, we are using about 15 models and not more than 30 criteria.
To make the reconciliation workflow more scalable, we plan to work
on making the matrix and the small multiples more optimized with
respect to the similarity metrics. For extending the matrix to a more
general case with continuous data, we will use clustering algorithms
and row reordering operations [6, 41] for visual display of the groups.
For handling the scalability issue, we also want to focus on dynamic
filtering strategies for letting users focus on a subset of groups or pa-
rameters and drive the optimization process with more flexibility. Sec-
ond, we currently use a simple time model. The success of our ap-

proach will lead us to extend this framework to more complex models
of time, where more sophisticated brushing and querying [13] needs
to be applied. Finally, we are handling only two types of descriptors.
Increasing diversity of descriptor data will pose challenges for a high
granularity visual representation, and also for reducing the visual com-
plexity in how the views interact. We plan to address these challenges
in future research with data from various application domains.
Generalization: As observed before, the visual reconciliation tech-
nique is not restricted to the climate science domain. As a next step,
we will apply this technique in the healthcare domain, where the goal
is to reconcile patient similarity with drug similarity for personalized
medicine development [42]. Another potential application is in the
product design domain. For example in the automotive market, car
models can be qualified by multitude of features. It will be of interest
to automotive companies to reconcile similarity of car models based
on their descriptors, with the similarity based on transaction data. In
short, we posit that visual reconciliation can potentially serve as an
important analytics paradigm for making sense of the ever-growing
variety of available data and their diverse similarity criteria.
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