
Interpreting Black-Box Classifiers Using
Instance-Level Visual Explanations

Paolo Tamagnini
Sapienza University of Rome

Rome, RM 00185, Italy

Josua Krause
New York University

Tandon School of Engineering
Brooklyn, NY 11201, USA

Aritra Dasgupta
Paci�c Northwest National Laboratory

Richland, WA 99354, USA

Enrico Bertini
New York University

Tandon School of Engineering
Brooklyn, NY 11201, USA

ABSTRACT
To realize the full potential of machine learning in diverse real-
world domains, it is necessary for model predictions to be readily
interpretable and actionable for the human in the loop. Analysts,
who are the users but not the developers of machine learning mod-
els, often do not trust a model because of the lack of transparency in
associating predictions with the underlying data space. To address
this problem, we propose Rivelo, a visual analytics interface that
enables analysts to understand the causes behind predictions of
binary classi�ers by interactively exploring a set of instance-level
explanations. These explanations are model-agnostic, treating a
model as a black box, and they help analysts in interactively prob-
ing the high-dimensional binary data space for detecting features
relevant to predictions. We demonstrate the utility of the interface
with a case study analyzing a random forest model on the sentiment
of Yelp reviews about doctors.

KEYWORDS
machine learning, classi�cation, explanation, visual analytics
ACM Reference format:
Paolo Tamagnini, Josua Krause, Aritra Dasgupta, and Enrico Bertini. 2017.
Interpreting Black-Box Classi�ers Using Instance-Level Visual Explanations.
In Proceedings of HILDA’17, Chicago, IL, USA, May 14, 2017, 6 pages.
DOI: http://dx.doi.org/10.1145/3077257.3077260

1 INTRODUCTION
In this paper we present a work�ow and a visual interface to help
domain experts and machine learning developers explore and un-
derstand binary classi�ers. The main motivation is the need to
develop methods that permit people to inspect what decisions a
model makes after it has been trained.

While solid statistical methods exist to verify the performance
of a model in an aggregated fashion, typically in terms of accuracy

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior speci�c permission
and/or a fee. Request permissions from permissions@acm.org.
HILDA’17, Chicago, IL, USA
© 2017 Copyright held by the owner/author(s). Publication rights licensed to ACM.
978-1-4503-5029-7/17/05. . . $15.00
DOI: http://dx.doi.org/10.1145/3077257.3077260

over hold-out data sets, there is a lack of established methods to
help analysts interpret the model over speci�c sets of instances.

This kind of activity is crucial in situations in which assessing
the semantic validity of a model is a strong requirement. In some
domains where human trust in the model is an important aspect
(e.g., healthcare, justice, security), verifying the model exclusively
through the lens of statistical accuracy is often not su�cient [4, 6, 8,
15, 16, 24]. This need is exempli�ed by the following quote coming
from the recent DARPA XAI program: “the e�ectiveness of these
systems is limited by the machines current inability to explain their
decisions and actions to human users [. . . ] it is essential to understand,
appropriately trust, and e�ectively manage an emerging generation
of arti�cially intelligent machine partners" [9].

Furthermore, being able to inspect a model and observe its de-
cisions over a data set has the potential to help analysts better
understand the data and ultimately the phenomenon it describes.

Unfortunately, the existing statistical procedures used for model
validation do not communicate this type of information and no
established methodology exists.

In practice, this problem is often addressed using one or more of
the following strategies: (1) build a more interpretable model in the
�rst place even if it reduces performance (typically decision trees
or logistic regression); (2) calculate the importance of the features
used by a model to get a sense of how it makes decisions; (3) verify
how the model behaves (that is, what output it generates) when
fed with a known set of relevant cases one wants to test.

All of these solutions however have major shortcomings. Build-
ing more interpretable models is often not possible unless one is
ready to accept relevant reductions in model performance. Further-
more, and probably less obvious, many models that are considered
interpretable can still generate complicated structures that are by
no means easy to inspect and interpret by a human being (e.g.,
decision trees with a large set of nodes) [8]. Methods that rely on
calculation of feature importance, e.g., weights of a linear classi�er,
report only on the global importance of the features and does not
tell much about how the classi�er makes decisions in particular
cases. Finally, manual inspection of speci�c cases works only with
a very small set of data items and does not assure a more holistic
analysis of the model.

To address all of these issues we propose a solution that provides
the following bene�ts:



HILDA’17, May 14, 2017, Chicago, IL, USA Tamagnini et al.

(1) Requires only to be able to observe the input/output behav-
ior of a model and as such it can be applied to any existing
model without having access to its internal structure.

(2) Captures decisions and feature importance at a local level,
that is, at the level of single instances, while enabling the
user to obtain an holistic view of the model.

(3) It can be used by domain experts with little knowledge of
machine learning.

The solution we propose leverages instance-level explanations:
techniques that compute feature importance locally, for a single
data item at a time. For instance, in a text classi�er such techniques
produce the set of words the classi�er uses to make a decisions
for a speci�c document. The explanations are then processed and
aggregated to generate an interactive work�ow that enables the
inspection and understanding of the model both locally and globally.

In Section 4, we will describe the work�ow (Figure 2) in detail
which consists of the following steps. The system generates one
explanation for each data item contained in the data set and creates
a list of features ranked according to how frequently they appear
in the explanations. Once the explanations and the ranked list are
generated, the user can interact with the results as follows: (1)
the user selects one or more features to focus on speci�c decisions
made with them; (2) the system displays the data items explained by
the selected features together with information about their labels
and correctness; (3) the user inspects them and selects speci�c
instances to compare in more detail; (4) the system provides a
visual representation of the descriptors / vectors that represent the
selected data items (e.g., words used as descriptors in a document
collection) and permits to visually compare them; (5) the user can
select one or more of the descriptors / vectors to get access to the
raw data if necessary (e.g., the actual text of a document).

In the following sections, we describe this process in more details.
We �rst provide background information on related work, we then
describe the methods used to generate the explanations followed
by a more detailed description of the visual user interface and
interactions developed to realize the work�ow. Finally, we provide
a small use case to show how the tool works in practice and conclude
with information on the existing limitations and how we intend to
extend the work in the future.

2 RELATEDWORK
Di�erent visual analytics techniques and tools have been developed
to inspect the decision-making process of machine learning models
and several authors advocated for the need to make models more
interpretable [12]. In this section, we describe the previous work
that is most relevant to our proposed model explanation process.

Many of the explanation methods investigated by researchers
employ a white-box approach, that is, they aim at visualizing the
model by creating representations of the internal structures of the
models. For instance, logistic regression is often used to create a
transparent weighting of the features and visualization systems
have been developed to visualize decisions trees [22] and neural
networks [14, 19]. These methods however can only be applied to
speci�c models and, as such, su�er from limited �exibility.

Another option is to treat the model as a black-box and try to
extract useful information out of it. One solution developed in
the past is the idea of training a more interpretable model out

Figure 1: Illustrating the process of explanation computa-
tion. x is an observed instance vector. We treat theMLmodel
as function f that maps a vector to a prediction score. The
explanation algorithm tries to �nd the shortest vector e for
which f (x − e) is below the threshold. This vector e serves as
an explanation for the prediction.

of an existing complex model, e.g., inferring rules from a neural
network [7]. A more recent solution is the idea of generating local
explanations that are able to explain how a model makes a decision
for single instances of a data set [11, 13, 20]. These works are
excellent solutions to the problem of investigating single instances
but there are no established methods to go from single instances
back to a global view of the model. This is precisely what our work
tries to achieve by using instance-level explanations and embedding
them in an interactive system that enables their navigation.

Another related approach is to visualize sets of alternative mod-
els to see how they compare in terms of the predictions they make.
For instance, ModelTracker [1] visualizes predictions and their cor-
rectness and how these change when some model parameters are
updated. Similarly, MLCube Explorer [10] helps users compare
model outcomes over various subsets and across multiple models
with a data cube analysis type of approach. One main di�erence
between these methods and the one we propose is that we do not
base our analysis exclusively on model output, but also use the in-
termediary representation provided by explanations. This enables
us to derive more speci�c information about how a model makes
some decisions, and go beyond exploring what decisions it makes.

Somewhat related to our work are interactive machine learning
solutions in which the output of the model is visualized to allow
the user to give feedback to the model and improve its decisions
[2, 3, 21]. The goal of our work however is to introduce methods
and tools that can be easily integrated in existing settings and
work�ows adopted by domain experts, and as such does not rely
on the complex modi�cations necessary to include explicit user
feedback in the process.

3 INSTANCE-LEVEL EXPLANATIONS
An instance level explanation consists of a set of features that are
considered the most responsible for the prediction of an instance,
i.e., the smallest set of features which have to be changed in the
instance’s binary vector to alter the predicted label. We used a
variant of the instance-level explanation algorithm designed by
Martens and Provost [17] for document classi�cation.



Interpreting Black-Box Classifiers Using Instance-Level Visual Explanations HILDA’17, May 14, 2017, Chicago, IL, USA

Figure 2: The Rivelo work�ow involves the following user interactions: selection of features, selection of the explanation,
vectors inspection, and exploration of the raw data. By switching back and forth between those steps, the user can freely
change the selections in a smooth and animated visualization. This explanation-drivenwork�owcan extract global behaviours
of the model from patterns of local anomalies through human interaction.

The overall process of the explanation generation is illustrated
in Figure 1. Rivelo computes an explanation for each instance using
the input-output relationships of a black-box model.

The technique works by creating arti�cial instances derived from
observed values in order to examine the in�uence of the features
to the output. It assumes binary feature vectors. Starting with
the original binary vector x and its predicted label, the algorithm
“removes" features from the vector creating an arti�cial instance
x − e . Features are added to the vector of “removed" features e until
the predicted label of x − e is di�erent than the one of x . The set
E = {k | ek = 1} of “removed" features is then called an explanation
of the original vector x .

Removing in this context indicates the change of a feature that is
present to not being present. We chose the term “removing" because
it is particularly intuitive for sparse binary data. The technique
works only for sparse binary data where it is possible to assign
prediction responsibility to components relative to present features.
This is the case for bag of words in document classi�ers, but also
for any kind of data where instances represent a set of items, like
medications in the medical domain and products bought or liked
in market basket analysis.

The machine learning model is assumed to deterministically
compute a prediction score f (x) between 0 and 1 for a given input
vector x . The predicted label is then computed by comparing this
score to a given optimal threshold. This threshold is computed on
the training data minimizing the number of misclassi�cations.

The process of removing features from a vector is the core of
the explanation algorithm. The original algorithm by Martens and
Provost [17] consists of successively removing the feature with the
highest impact on the prediction score towards the threshold until
the label changes. This results in the most compact explanation
for a given instance. If the prediction score cannot be changed
towards the threshold by removing a feature the instance is dis-
carded without outputting an explanation. To increase the number
of explained instances, in order to provide a fuller picture of the
model’s decisions in our visualization, we relax this restriction by
removing random features with no impact on the prediction score.
Oftentimes, after removing some features randomly the prediction
score starts changing again leading to an explanation for this oth-
erwise discarded instance. However, removing features with no
impact on the prediction score violates the compactness property

of the resulting explanation. In order to restore this property we
add a post-processing step that re-adds features that do not con-
tribute to a favorable prediction score change. This process is time
consuming requiring us to pre-compute explanations o�ine.

Another di�erence of our approach to the algorithm by Martens
and Provost [17] is the handling of explanations that grow too
long. Explanations that are long are not intuitively interpretable
by a user thus they are discarded in the original algorithm. As we
are adding random features, in some cases the explanation might
grow too long before the compacting step. In order to not discard
explanations that are only temporarily too long we perform the
length check after this step.

4 RIVELO: THE EXPLANATION INTERFACE
We implemented the work�ow we brie�y described in the intro-
duction in an interactive visual interface we call Rivelo1. The appli-
cation in its current implementation works exclusively with binary
classi�ers and binary features and it assumes to receive as an input
a data set and a trained classi�er. The data set must also contain
ground truth information, that is, for each data item what is the
correct label the classi�er is supposed to predict. Once the system
is launched, it automatically computes the following information:
one explanation for each data item; information about whether the
prediction made by the classi�er is correct or incorrect (including
false positives and false negatives); the list of features, ranked ac-
cording to how frequently they appear in the explanations. For each
feature, it also computes the ratio between positive and negative
labels, that is whether the feature tends to predict more positive or
negative outcomes, and the number of errors the classi�er makes
when predicting items whose explanations contain that feature.

The user interface is made of the following main panels that
re�ect the steps of the work�ow (Figure 3): a feature list panel (1,
2) on the left, to show the list of ranked features; the explanations
panel (3, 4, 5) next to it, to show the explanations and data items
containing the selected features; the descriptors panel (6), containing
a visual representation of the vectors / descriptors of the data items
selected in the explanations panel; and the raw data panel (7, 8)
containing the raw data of selected vectors. We now describe each
panel and interaction with them in more details.

1Rivelo GitHub repository at: https://github.com/nyuvis/rivelo.

https://github.com/nyuvis/rivelo


HILDA’17, May 14, 2017, Chicago, IL, USA Tamagnini et al.

Figure 3: Showing the user interface of Rivelo. (1) is a selected feature and (2) are its relative indicators for average prediction,
errors and frequency within the explanations set. Some of the features on this list are grayed out because they wouldn’t return
any explanation if added to the query. (3) is the selected explanationwith the number of explained documents and the number
of used features. (4) are the cells representing each explained instance, with color resembling the prediction value. Among
them, (5) represent some false positive instances. (6) is the descriptor representing visually one of the explained instances. (7)
is the raw data related to the same descriptor. (8) shows in bold how the explanation feature is used in the text data.

The feature list panel displays the features computed in the
beginning and displays the following information in a list: the name
of the feature, the ratio of positive labels, the number of errors and
the number of explanations it belongs to. The ratio is displayed as
a colored dot with shades that go from blue to red to depict ratios
between 0% and 100% true outcomes. The number of errors and the
number of explanations are depicted using horizontal bar charts.
Users can sort the list according to three main parameters: (1)
number of explanations, which enables them to focus on importance,
that is, how many decisions the classi�er actually makes using that
feature. (2) ratio of positive labels, which enables them to focus on
speci�c sets of decisions, and (3) number of errors, which enables
them to focus on correctness, that is, what features and instances
create most of the problems.

Once one or more features are selected, the explanations panel
displays all explanations containing the selected features. The expla-
nations are sorted according to the number of explained instances.
Each explanation has a group of colored cells next to it ((4) in
Figure 3) that represent one instance each. The color of the cell
indicates the value of its prediction (blue for positive and red for
negative) and di�erent shades depending on the prediction value.
When the cell represents an instance that is classi�ed incorrectly it
is marked with a small cross, to indicate the error ((5) in Figure 3).

By selecting an explanation or a single cell we can display the
explained instances in the descriptors panel. The panel displays

a list of visual “descriptors", each depicting the vector of values
used to represent an instance in the data set ((6) in Figure 3). The
descriptor is designed as follows. Each rectangle is split into as
many (thin) cells as the number of features in the data set. A
cell is colored with a dark shade (small vertical dark segments
in the image) when a feature is present in the instance and left
empty when it is not present. A cell is colored in green when it
represents a feature contained in the explanation. The background
color represent the predicted label.

The main use of descriptors is to help the user visually assess
the similarity between the selected instances according to which
(binary) features they contain. When looking at the list of descrip-
tors, one can at a glance learn how many features are contained in
a instance (that is, how many dark cells are in it) and how similar
the distribution of features is. Descriptors are particularly useful in
the case of instances with sparse features, that is, when the number
of features present in a given instance is much smaller than the
number of those which are not present.

Next to the vectors panel, the raw data panel displays the actual
raw data corresponding to the selected descriptors. This is useful to
create a “semantic bridge" between the abstract representation used
by the classi�er and the descriptor representation, and the original
data. In our example, the data shown is text from a document
collection but di�erent representations can be used in this panel
to connect the abstract vector to the actual original data contained



Interpreting Black-Box Classifiers Using Instance-Level Visual Explanations HILDA’17, May 14, 2017, Chicago, IL, USA

in the data set (e.g., images). In this case we also highlight, in each
text snippet, the words that correspond to the features contained in
the vector. Similar solutions can be imagined for other data types.

One additional panel of the user interface is accessible on demand
to obtain aggregate statistics about the explanation process and
the classi�er (not shown in the �gure). The panel provides several
pieces of information including: percentage of explained instances
over the total number of instances, number of instances predicted
correctly and incorrectly for each label, number of features, number
of data instances as well as the prediction threshold used by the
classi�er to discriminate between positive and negative cases.

5 USE CASE: DOCTOR REVIEWS ON YELP
In this section we present a use case based on the analysis of a text
classi�er used to predict the rating a user will give to a doctor in
Yelp, the popular reviews aggregator. To generate the classi�er, we
used a collection of 5000 reviews submitted by Yelp users. We �rst
processed the collection using stemming and stop-word removal
and then created a binary feature for each term extracted, for a
total of 2965 binary features. We also created a label out of the
rating �eld, grouping together reviews with 1 or 2 stars for negative
reviews and those with 4 and 5 stars for positive reviews. This way
we created 4356 binary vectors, one for each review, of which 3334
( 76%) represent positive reviews and the remaining ( 24%) negative
reviews. Then, we trained a random forest model [5] based on
the data and labels just described and obtained a classi�er with
an area under the ROC curve score equal to AUC = 0.875. We
exported the scorer function of the model, the predicted label and
the ground truth label for each review of test data to generate the
input for Rivelo. We also computed the optimal threshold for the
scorer function 0.6. The value is closer to 1 to compensate for the
high amount of positive reviews in the data set.

After the �rst computation of explanations, which took around
1.5 hours to complete, we explained 64% of the reviews with expla-
nations of length up to 5 words. By post-processing, which took
about 1.5 hours as well, we were able to reduce the size of 34.5% of
the 1563 explanations that were longer than 5 features. This way
we increased the number of explained instances by 542, explaining
76.52% of instances of our test set. By compacting long explanations
in the post-processing, we are able to explain 12% more instances
than the original algorithm by Martens and Provost [17].

Figure 3 shows the results obtained by the entire procedure.
Looking at the set of features sorted by frequency one can read-

ily see that most of the model decisions take place to predict the
positive label and that many of the words used capture adjectives
that represent positive sentiments such as, “friendly", “love" and
“recommend", which have been labeled correctly as positive words.
By taking a closer look we also see less obvious words, that do not
seem to have straightforward role in the classi�cation, even if they
are used more than others in explanations. For example, the word
“Dr." is used frequently to explain positive reviews. Using the error
bar indicator next to “Dr." ((2) in Figure 3), we can also see that the
feature has a very low false positive rate.

When we select this feature, the interface shows all the explana-
tions and instances containing it. We can then see that the large
majority of cases is predicted by the word “Dr." alone or a combina-
tion of this word with some other positive property such as “great"

and “recommend". We can also see that some of the instances are
classi�ed incorrectly, especially those in which the explanation
contains exclusively the word “Dr.". To better understand this trend,
we inspect several raw text documents associated to these instances
and �gure out that reviewers tend to use the name of the doctor
preceded by the word “Dr." whenever they have to say something
positive, but they tend to refer to the practitioner as “the doctor",
using a more generic terminology, when writing a negative review.

Through this inspection, we can also better understand how the
few false positives explained by “Dr." happen. When we look at
the raw text of selected false positive cases we see that most of
them represent rare cases where the patient is using the word “Dr."
without using the doctor name (e.g. “Dr. is very nice but the sta� is
rude."). The model therefore tends to be confused by outlier cases
in which a contradiction of the rule is present.

Another interesting word is the word “call", which, as shown
in the �gure, tends to predict negative reviews, even though with
a somewhat high error rate. While not immediately obvious why
this word leads to negative reviews, we �gure out, through the
visual inspection enabled by our application, that reviewers tend
to mention cases in which they have called the doctor’s o�ce and
received poor assistance. A similar case is the feature “dentist"
(not visible in the �gure), which also tends to predict negative
reviews. The feature however has also a somewhat higher error rate
which means many positive reviews are misclassi�ed as negative.
Through closer inspection, we realize that the classi�er is not able to
disambiguate cases in which the word “dentist" is used in a positive
context such as “awesome dentist".

The most common word in explanations with hundreds of asso-
ciated documents is “great". The majority of those documents are
true positive, but we can still �nd and select the few false positive
the model generates. Selecting all the misclassi�ed positive reviews
containing “great" we spot an interesting problem: some of the re-
viewers sometime use the word “great" in a sarcastic way, making
the detection of a negative connotation too hard for the classi�er.
Similarly, we also notice that the word “great" is sometime used
in conjunction with a negation, that is, “not great", making it once
again too hard for the classi�er to make the correct prediction with
its current con�guration. An interesting aspect of this last case
is that the manual inspection of misclassi�ed instances can lead
to ideas on how the classi�er could be improved. For instance, in
this last case equipping the classi�er with means to detect negation
may lead to improved performance.

6 DISCUSSION
Our use case shows how the proposed solution can help �gure out
major decisions made by the classi�er, spot potential issues and
possibly also help derive insights on how problems can be solved.
The system, however has, in its current implementation, a number
of relevant limitations, that we discuss below.

First, Rivelo works exclusively with binary classi�cation and
binary feature sets. While this speci�c con�guration covers a large
set of relevant cases (e.g., we tested the system with a medical data
set describing drugs administered to patients in emergency rooms
to predict admissions), many other relevant cases are not covered;
notably cases in which features or the predicted outcome are not
binary. To solve this problem we will need to develop explanations



HILDA’17, May 14, 2017, Chicago, IL, USA Tamagnini et al.

and design visual representations able to handle the more general
case of non-binary features and multiclass outcomes. While an
extension of the technique to multiclass classi�cation is not trivial
extending to numerical input data could be achieved by adopting
techniques like those proposed by Prospector [13] and LIME [20].

Second, the descriptors we use to compare selected instances in
terms of their similarity do not lead to an optimal solution. Ideally,
we would like to more directly explain what makes instances with
similar con�gurations have di�ering outcomes and vice-versa. One
potential solution we will investigate is to train local models to
rank the features in the descriptors in ways that highlight the
di�erences that lead to di�erent outcomes (e.g., instances with
the same explanation but di�erent outcome). Another possible
extension is to provide a scatter-plot visualization using a projection
of the selected instances, similar to the technique used by Piava
et al. [18]. To better compare a large number of instances we could
use a projection that uses dimensionality reduction, as for example t-
SNE [23]. This way we could visually correlate instance similarities
and outcomes. Multidimensional projections however often su�er
of several distortion e�ects that reduce the trustworthiness of the
visualization. In addition, they do not provide a direct relationship
between the original data space and the trends observed in the
projections, making it harder to understand the root causes of
observed issues.

Another important limitation is our focus on understanding one
single model at a time. Often important insights can be generated
by comparing multiple models. We plan to explore how our tech-
nique can be extended to multiple model comparisons and see what
advantages it may provide.

7 CONCLUSION AND FUTUREWORK
In this paper, we have shown how a visual explanation work�ow
can be used to help people make sense of and assess a classi�er using
a black-box approach based on instance-level explanations and
interactive visual interfaces. Our system called Rivelo aggregates
instances using explanations and provides a set of interactions and
visual means to navigate and interpret them. The work has not
been validated with a user study. Further investigation is needed
to fully understand the e�ectiveness of our approach, potential
limitations and the extent to which it helps analysts reach useful
and accurate conclusions. For this reason, we intend to evaluate the
system in the near future through a series of user studies involving
analysts and domain experts with a range of expertise in machine
learning and in the application domain.

ACKNOWLEDGMENTS
We thank Prof. Foster Provost for his help in understanding and us-
ing his instance-level explanation technique. We also thank Yelp for
allowing us to use its invaluable data sets. The research described
in this paper is part of the Analysis in Motion Initiative at Paci�c
NorthWest National Laboratory (PNNL). It was conducted under
the Laboratory Directed Research and Development Program at
PNNL, a multi-program national laboratory operated by Battelle.
Battelle operates PNNL for the U.S. Department of Energy (DOE)
under contract DE-AC05-76RLO01830. The work has also been
partially funded by the Google Faculty Research Award "Interactive
Visual Explanation of Classi�cation Models".

REFERENCES
[1] Saleema Amershi, Max Chickering, Steven M. Drucker, Bongshin Lee, Patrice

Simard, and Jina Suh. 2015. ModelTracker: Redesigning Performance Analysis
Tools for Machine Learning. In Proceedings of the 33rd Annual ACM Conference
on Human Factors in Computing Systems (CHI ’15). ACM, 337–346.

[2] Saleema Amershi, James Fogarty, Ashish Kapoor, and Desney Tan. 2011. E�ective
End-user Interaction with Machine Learning. In Proceedings of the Twenty-Fifth
AAAI Conference on Arti�cial Intelligence (AAAI’11). AAAI Press, 1529–1532.

[3] Saleema Amershi, James Fogarty, and Daniel Weld. 2012. Regroup: Interactive
Machine Learning for On-demand Group Creation in Social Networks. In Pro-
ceedings of the SIGCHI Conference on Human Factors in Computing Systems (CHI
’12). ACM, 21–30.

[4] Bart Baesens, Rudy Setiono, Christophe Mues, and Jan Vanthienen. 2003. Using
Neural Network Rule Extraction and Decision Tables for Credit-Risk Evaluation.
Manage. Sci. 49, 3 (March 2003), 312–329.

[5] Leo Breiman. 2001. Random Forests. Mach. Learn. 45, 1 (Oct. 2001), 5–32.
[6] Rich Caruana, Yin Lou, Johannes Gehrke, Paul Koch, Marc Sturm, and Noemie

Elhadad. 2015. Intelligible Models for HealthCare: Predicting Pneumonia Risk
and Hospital 30-day Readmission. In Proceedings of the 21th ACM SIGKDD Inter-
national Conference on Knowledge Discovery and Data Mining (KDD ’15). ACM,
1721–1730.

[7] Mark W. Craven and Jude W. Shavlik. 1998. Using Neural Networks for Data
Mining. (1998).

[8] Alex A Freitas. 2014. Comprehensible classi�cation models: a position paper.
ACM SIGKDD explorations newsletter 15, 1 (2014), 1–10.

[9] David Gunning. 2017. Explainable Arti�cial Intelligence (XAI). http://www.
darpa.mil/program/explainable-arti�cial-intelligence. (2017). [Online; accessed
2017-April-7].

[10] Minsuk Kahng, Dezhi Fang, and Duen Horng (Polo) Chau. 2016. Visual Explo-
ration of Machine Learning Results Using Data Cube Analysis. In Proceedings of
the Workshop on Human-In-the-Loop Data Analytics (HILDA ’16). ACM.

[11] Josua Krause, Adam Perer, and Enrico Bertini. 2014. INFUSE: Interactive Feature
Selection for Predictive Modeling of High Dimensional Data. IEEE Transactions
on Visualization and Computer Graphics 20, 12 (Dec 2014), 1614–1623.

[12] Josua Krause, Adam Perer, and Enrico Bertini. 2016. Using Visual Analytics
to Interpret Predictive Machine Learning Models. ArXiv e-prints 1 (June 2016).
arXiv:1606.05685

[13] Josua Krause, Adam Perer, and Kenney Ng. 2016. Interacting with Predictions:
Visual Inspection of Black-box Machine Learning Models. In Proceedings of the
2016 CHI Conference on Human Factors in Computing Systems (CHI ’16). ACM,
5686–5697.

[14] Mengchen Liu, Jiaxin Shi, Zhen Li, Chongxuan Li, Jun Zhu, and Shixia Liu.
2017. Towards Better Analysis of Deep Convolutional Neural Networks. IEEE
Transactions on Visualization and Computer Graphics 23, 1 (2017), 91–100.

[15] Yin Lou, Rich Caruana, and Johannes Gehrke. 2012. Intelligible Models for Clas-
si�cation and Regression. In Proceedings of the 18th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining (KDD ’12). ACM, 150–158.

[16] David Martens, Bart Baesens, Tony Van Gestel, and Jan Vanthienen. 2007. Com-
prehensible credit scoring models using rule extraction from support vector
machines. European Journal of Operational Research 183, 3 (2007), 1466 – 1476.

[17] David Martens and Foster Provost. 2014. Explaining Data-driven Document
Classi�cations. MIS Q. 38, 1 (March 2014), 73–100.

[18] Jose Gustavo S Paiva, Sao Carlos, and Rosane Minghim. 2015. An approach to sup-
porting incremental visual data classi�cation. IEEE Transactions on Visualization
and Computer Graphics 21, 1 (Jan. 2015), 4–17.

[19] Paulo E. Rauber, Samuel G. Fadel, Alexandre X. Falcao, and Alexandru C. Telea.
2017. Visualizing the Hidden Activity of Arti�cial Neural Networks. IEEE
Transactions on Visualization and Computer Graphics 23, 1 (Jan. 2017), 101–110.

[20] Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. 2016. Why Should I
Trust You?: Explaining the Predictions of Any Classi�er. In Proceedings of the
22nd ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining. ACM, 1135–1144.

[21] Gary K. L. Tam, Vivek Kothari, and Min Chen. 2017. An Analysis of Machine-
and Human-Analytics in Classi�cation. IEEE Trans. Vis. Comput. Graph. 23, 1
(2017), 71–80.

[22] Stef van den Elzen and Jarke J. van Wijk. 2011. BaobabView: Interactive construc-
tion and analysis of decision trees. In Visual Analytics Science and Technology
(VAST), IEEE Conference on. IEEE Computer Society, 151–160.

[23] Laurens van der Maaten and Geo�rey E. Hinton. 2008. Visualizing High-
Dimensional Data Using t-SNE. Journal of Machine Learning Research 9 (2008),
2579–2605.

[24] Alfredo Vellido, Joséd. Martín-guerrero, and Paulo J. G. Lisboa. 2012. Making
machine learning models interpretable. In In Proc. European Symposium on Arti-
�cial Neural Networks, Computational Intelligence and Machine Learning, Vol. 12.
163–172.

http://www.darpa.mil/program/explainable-artificial-intelligence
http://www.darpa.mil/program/explainable-artificial-intelligence
http://arxiv.org/abs/1606.05685

	Abstract
	1 Introduction
	2 Related Work
	3 Instance-Level Explanations
	4 RIVELO: THE EXPLANATION INTERFACE
	5 Use Case: Doctor reviews on Yelp
	6 Discussion
	7 Conclusion and future work
	Acknowledgments
	References

